精英家教網 > 初中數學 > 題目詳情
直線y=2x-3與直線y=x-1的交點坐標是(  )
A、(2,1)B、(4,3)C、(2,-1)D、(-2,1)
分析:由于函數圖象交點坐標為兩函數解析式組成的方程組的解;本題可聯立兩條直線的解析式,所組方程組的解即為兩函數的交點坐標.
解答:解:聯立兩函數的解析式有:
y=2x-3
y=x-1

解得:
x=2
y=1
;
因此直線y=2x-3與直線y=x-1的交點坐標是(2,1).
故選A.
點評:方程組的解就是使方程組中兩個方程同時成立的一對未知數的值,而這一對未知數的值也同時滿足兩個相應的一次函數式,因此方程組的解就是兩個相應的一次函數圖象的交點坐標.
練習冊系列答案
相關習題

科目:初中數學 來源:廣東省汕頭市潮陽區(qū)2011年初中畢業(yè)生學業(yè)考試模擬考數學試題 題型:044

閱讀下面的材料:

在平面幾何中,我們學過兩條直線平行和垂直的定義.下面就兩個一次函數的圖象所確定的兩條直線,給出它們平行和垂直的定義:設一次函數y=k1x+b1(k1≠0)的圖象為直線l1,一次函數y=k2x+b2(k2≠0)的圖象為直l2,若k1=k2,且b1≠b2,則直線l1與直線l1互相平行.若k1·k2=-1,則直線l1與直線l2互相垂直.

解答下面的問題:

(1).求過點P(1,4)且與已知直線y=-2x-1平行的直線l的函數表達式.

(2).設直線l分別與y軸、x軸交于點A、B,如果直線m:y=kx+t(t>0)與直線l垂直且交y軸于點C,求出△ABC的面積S關于t的函數表達式.

查看答案和解析>>

科目:初中數學 來源:2011年初中畢業(yè)升學考試(廣西柳州卷)數學 題型:選擇題

如圖,直線l:y=x+2與y軸交于點A,將直線l繞點A旋轉90º后,所得直

線的解析式為【    】

A.y=x-2                B.y=-x+2

C.y=-x-2              D.y=-2x-1

 

查看答案和解析>>

科目:初中數學 來源: 題型:

  如圖,在平面直角坐標系中,點0是坐標原點,直線y=x+4分別交x軸、Y軸于點A、點B,直

線y=-2x+b分別交x軸、y軸于點C、點D,且0C=20B.設直線AB、CD相交于點E.

  (1)求直線CD的解析式;  ‘

  (2)動點P從點B出發(fā)沿線段BC以每秒鐘個單位的速度向點C勻速移動,同時動點

Q從點D出發(fā)沿線段DC以每秒鐘2個單位的速度向點C勻速移動,當P到達點C時,點

Q同時停止移動.設P點移動的時間為t秒,PQ的長為d(d≠0),求d與t之間的函數關系式,

并直接寫出自變量t的取值范圍;

  (3)在(2)的條件下,在P、Q.的運動過程中,設直線PQ、直線AB相交于點N.當t為何值時,

?并判斷此時以點Q為圓心,以3為半徑的⊙Q與直線AB位置關系,請說明理由.

查看答案和解析>>

同步練習冊答案