【題目】(1)根據要求,解答下列問題.
①方程的解為________________;
②方程的解為________________;
③方程的解為________________;
(2)根據以上方程特征及其解的特征,請猜想:
①方程的解為________________;
②關于的方程________________的解為,.
(3)請用配方法解方程,以驗證猜想結論的正確性.
【答案】(1)①x1=x2=1,;②x1=1,x2=2;③x1=1,x2=3;(2)①x1=1,x2=8;②x2-(1+n)x+n=0;(3)見解析;
【解析】
(1)利用因式分解法解各方程即可;
(2)根據以上方程特征及其解的特征,可判定方程x2-9x+8=0的解為1和8;②關于x的方程的解為x1=1,x2=n,則此一元二次方程的二次項系數為1,則一次項系數為1和n的和的相反數,常數項為1和n的積.
(3)利用配方法解方程x2-9x+8=0可判斷猜想結論的正確.
(1)①(x-1)2=0,解得x1=x2=1,即方程x2-2x+1=0的解為x1=x2=1,;
②(x-1)(x-2)=0,解得x1=1,x2=2,所以方程x2-3x+2=0的解為x1=1,x2=2,;
③(x-1)(x-3)=0,解得x1=1,x2=3,方程x2-4x+3=0的解為x1=1,x2=3;
…
(2)根據以上方程特征及其解的特征,請猜想:
①方程x2-9x+8=0的解為x1=1,x2=8;
②關于x的方程x2-(1+n)x+n=0的解為x1=1,x2=n.
(3)x2-9x=-8,
x2-9x+=-8+,
(x-)2=
x-=±,
所以x1=1,x2=8;
所以猜想正確.
故答案為x1=x2=1;x1=1,x2=2;x1=1,x2=3;x2-(1+n)x+n=0;
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數y=ax+b的圖象與反比例函數y=的圖象交于一、三象限內的A、B兩點,與x軸交于C點,點A的坐標為(2,m),點B的坐標為(n,﹣2),tan∠BOC= .
(1)求該反比例函數和一次函數的解析式.
(2)求△BOC的面積.
(3)P是x軸上的點,且△PAC的面積與△BOC的面積相等,求P點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2019年中國北京世界園藝博覽會(以下簡稱“世園會”)于4月29日至10月7日在北京延慶區(qū)舉行世園會為滿足大家的游覽需求,傾情打造了4條各具特色的趣玩路線,分別是:.“解密世園會”、.“愛我家,愛園藝”、C.“園藝小清新之旅”和D.“快速車覽之旅”李欣和張帆都計劃暑假去世園會,他們各自在這4條線路中任意選擇條線路游覽,每條線路被選擇的可能性相同.李欣和張帆恰好選擇同線路游覽的概率為_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+1經過A(﹣1,0),B(1,1)兩點.
(1)求該拋物線的解析式;
(2)閱讀理解:
在同一平面直角坐標系中,直線l1:y=k1x+b1(k1,b1為常數,且k1≠0),直線l2:y=k2x+b2(k2,b2為常數,且k2≠0),若l1⊥l2,則k1k2=﹣1.
解決問題:
①若直線y=2x﹣1與直線y=mx+2互相垂直,則m的值是____;
②拋物線上是否存在點P,使得△PAB是以AB為直角邊的直角三角形?若存在,請求出點P的坐標;若不存在,請說明理由;
(3)M是拋物線上一動點,且在直線AB的上方(不與A,B重合),求點M到直線AB的距離的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某文化用品商店用2000元購進一批學生書包,面市后發(fā)現供不應求,商店又購進第二批同樣的書包,所購數量是第一批購進數量的3倍,但單價貴了4元,結果第二批用了6300元。
(1)求第一批購進書包的單價是多少元?
(2)若商店銷售這兩批書包時,每個售價都是120元,全部售出后,商店共盈利多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).
(1) 請畫出△ABC向左平移5個單位長度后得到的△ABC;
(2) 請畫出△ABC關于原點對稱的△ABC;
(3) 在軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點是坐標原點,四邊形是菱形,點的坐標為,點在軸的正半軸上,直線交軸于點,邊交軸于點,連接
(1)菱形的邊長是________;
(2)求直線的解析式;
(3)動點從點出發(fā),沿折線以2個單位長度/秒的速度向終點勻速運動,設的面積為,點的運動時間為秒,求與之間的函數關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,ABCD中,∠BAD與∠ADC的角平分線交于BC邊的點F,∠ABC與∠BCD的角平分線交于AD邊的點H.
(1)求證:四邊形EFGH為矩形.
(2)若HF=3,求BC的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com