2、已知:如圖所示,在等腰△ABC中,AB=AC,AD⊥BC,垂足為D,AD=3,BD=4,則圖中陰影部分的面積是( 。
分析:觀察圖形,證明△BEF與△CEF全等,則陰影部分面積為正三角形面積的一半.
解答:解:∵△ABC為等邊三角形,AD是BC邊上的高,
∴AD垂直平分BC,
∴BF=CF,BE=CE,BD=CD,
又∵EF是公共邊,
∴△BEF≌△CEF,
∴S△BEF=S△CEF,
∴陰影部分面積是△ABC面積的一半,
∵S△ABC=12,
∴陰影部分的面積是6.
故選B.
點評:本題考查軸對稱的性質(zhì),難度一般,先觀察圖形找到突破口,從突破口進行解題就顯得比較容易,是易錯題,難度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、完成以下證明,并在括號內(nèi)填寫理由:
已知:如圖所示,在等腰梯形ABCD中,AD∥BC,AB=CD,∠1=∠2.
求證:BE=CE
證明:∵等腰梯形ABCD中,AD∥BC,AB=CD(已知)
∴∠B=∠
C
等腰梯形的性質(zhì)

在△
ABE
和△
DCE

∠1=∠2
AB=CD
∠B=∠C
∴△
ABE
≌△
DCE
ASA

∴BE=CE(
全等三角形的性質(zhì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、已知:如圖所示,以△ABC的三邊為邊,在BC的同側(cè)分別作等邊△ABD、△BCE、△ACF.
(1)你認(rèn)為四邊形ADEF是什么四邊形?寫出你的猜想并說明理由.
(2)當(dāng)△ABC滿足什么條件時,四邊形ADEF成為矩形?(寫出條件,不要求證明)
(3)當(dāng)△ABC滿足什么條件時,四邊形ADEF成為菱形?(寫出條件,不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖所示,AB∥DE,AB=DE,AF=DC.
(1)寫出圖中你認(rèn)為全等的三角形(不再添加輔助線);
(2)選擇你在(1)中寫出的全等三角形中的任意一對進行證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖所示,點C在線段AB上,分別以AC、BC為一邊作為等邊△ACM和等邊△BCN,連接AN、BM.
(1)求證:AN=BM;
(2)設(shè)AN、BM相交于點D,求證:∠ADB=120°;
(3)如果A、C、B三點不在同一直線上,那么AN=BM是否仍然成立?如果成立,加以證明;如果不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:專項題 題型:證明題

已知:如圖所示,在△ABC中,AB=AC,以BC為直徑的半圓O與邊AB相交于點D,切線DE⊥AC,垂足為點E
求證:(1)△ABC是等邊三角形;
(2)AE=CE。

查看答案和解析>>

同步練習(xí)冊答案