【題目】已知,如圖,在矩形ABCD中,對角線ACBD相交于點(diǎn)O,過點(diǎn)CBD的平行線,過點(diǎn)DAC的平行線,兩線交于點(diǎn)P

求證:四邊形CODP是菱形.

AD6,AC10,求四邊形CODP的面積.

【答案】①證明見解析;(2)S菱形CODP24.

【解析】

根據(jù)DPAC,CPBD,即可證出四邊形CODP是平行四邊形,由矩形的性質(zhì)得出OC=OD,即可得出結(jié)論;

利用SCODS菱形CODP先求出SCOD,即可得.

證明:①∵DPAC,CPBD

∴四邊形CODP是平行四邊形,

∵四邊形ABCD是矩形,

BDAC,ODBDOCAC,

ODOC

∴四邊形CODP是菱形.

②∵AD6,AC10

DC8

AOCO,

SCODSADC××AD×CD12

∵四邊形CODP是菱形,

SCODS菱形CODP12,

S菱形CODP24

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象分別與軸交于兩點(diǎn),正比例函數(shù)的圖象交于點(diǎn)

1)求的值及的解析式;

2)求的值;

3)一次函數(shù)的圖象為不能圍成三角形,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在梯形中,,點(diǎn)在直線上,聯(lián)結(jié),過點(diǎn)的垂線,交直線與點(diǎn),

1)如圖1,已知,:求證:

2)已知:,

當(dāng)點(diǎn)在線段上,求證:

當(dāng)點(diǎn)在射線上,①中的結(jié)論是否成立?如果成立,請寫出證明過程;如果不成立,簡述理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,在直角坐標(biāo)系xOy中,點(diǎn)A,點(diǎn)B坐標(biāo)分別為(﹣1,0),(0, ),連結(jié)AB,OD由△AOB繞O點(diǎn)順時(shí)針旋轉(zhuǎn)60°而得.

(1)求點(diǎn)C的坐標(biāo);
(2)△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)60°所掃過的面積;
(3)線段AB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)60°所掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,B=10°,ACB=20°,AB=4cm,ABC逆時(shí)針旋轉(zhuǎn)一定角度后與ADE重合,且點(diǎn)C恰好成為AD的中點(diǎn).

(1)指出旋轉(zhuǎn)中心,并求出旋轉(zhuǎn)的度數(shù);

(2)求出BAE的度數(shù)和AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠ADC=72°,AD的垂直平分線交對角線BD于點(diǎn)P , 垂足為E , 連接CP , 求∠CPB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了改善辦學(xué)條件,計(jì)劃購置一電子白板和一批筆記本電腦,經(jīng)投標(biāo),購買一塊電子白板比買三臺(tái)筆記本電腦多3000元,購買4塊電子白板和5臺(tái)筆記本電腦共需80000.

(1)求購買一塊電子白板和一臺(tái)筆記本電腦各需多少元?

(2)根據(jù)該校實(shí)際情況需購買電子白板和筆記本電腦的總數(shù)為396臺(tái),要求購買的總費(fèi)用不超過2700000元,并購買筆記本電腦的臺(tái)數(shù)不超過購買電子白板數(shù)量的3倍,該校有哪幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)叫做整點(diǎn),設(shè)坐標(biāo)軸的單位長度為1cm, 整點(diǎn)P從原點(diǎn)0出發(fā),速度為1cm/s, 且整點(diǎn)P做向上或向右運(yùn)動(dòng)(如圖1所示.運(yùn)動(dòng)時(shí)間(s)與整點(diǎn)(個(gè))的關(guān)系如下表:

整點(diǎn)P從原點(diǎn)出發(fā)的時(shí)間(s)

可以得到整點(diǎn)P的坐標(biāo)

可以得到整點(diǎn)P的個(gè)數(shù)

1

(01)(1,0

2

2

(0,2)(11)(2,0)

3

3

(0,3)(1,2)(2,1)(3,0)

4

.

·

.

根據(jù)上表中的規(guī)律,回答下列問題:

1)當(dāng)整點(diǎn)P從點(diǎn)0出發(fā)4s時(shí),可以得到的整點(diǎn)的個(gè)數(shù)為______個(gè).

2)當(dāng)整點(diǎn)P從點(diǎn)O出發(fā)8s時(shí),在直角坐標(biāo)系中描出可以得到的所有整點(diǎn),并順次連結(jié)這些整點(diǎn).

3)當(dāng)整點(diǎn)P從點(diǎn)0出發(fā)______s時(shí),可以得到整點(diǎn)(16,4)的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:∠1=∠2,EG平分∠AEC

1)如圖①,∠MAE45°,∠FEG15°,∠NCE75°.求證:ABCD;

2)如圖②,∠MAE140°,∠FEG30°,當(dāng)∠NCE   °時(shí),ABCD;

3)如圖②,請你直接寫出∠MAE、∠FEG、∠NCE之間滿足什么關(guān)系時(shí),ABCD;

4)如圖③,請你直接寫出∠MAE、∠FEG、∠NCE之間滿足什么關(guān)系時(shí),ABCD

查看答案和解析>>

同步練習(xí)冊答案