(2010•自貢)如圖,⊙O是△ABC的外接圓,∠A=30°,AB是⊙O的直徑,過點C作⊙O的切線,交AB延長線于D,CD=3cm,
(1)求⊙O的直徑;
(2)若動點M以3cm/s的速度從點A出發(fā)沿AB方向運動,同時點N以1.5cm/s的速度從B點出發(fā)沿BC方向運動.設運動的時間為t(0≤t≤2),連接MN,當t為何值時△BMN為直角三角形?并求此時該三角形的面積?

【答案】分析:(1)根據(jù)圓與切線的位置關系,可知∠BCD=∠A=30°,且AB為直徑,可推出AC=CD,再由三角函數(shù)關系可得出⊙O的直徑.
(2)經(jīng)分析,∠BNM或∠BMN可以為直角,即,此時MN∥AC,有速度關系可列出關系式.再根據(jù)面積公式即可算出.
解答:解:(1)連接OC,
∵CD為切線,
∴∠DCO=90°
∵∠A=30°,OA=OC,
∴∠ACO=30°
∵AB是直徑,
∴∠ACB=90°,∠OCB=60°,
∴∠BCD=30°,∠ABC=60°,
∴∠BCD=∠A=30°,∠D=30°,
∴∠A=∠D,
∴AC=CD=,即AB=6cm.

(2)如圖1:當∠BNM=90°時,MN∥AC,
,得t=1,即MN恰為△ACB的中位線,
=cm2,
當∠BMN=90°時,cos∠MBN=,
即cos60°=,解得t=1.6,
此時,MN=BM=(6-3t)=1.2,
S=×1.2×1.2=cm2
點評:本題主要考查了圓切線的性質及相似三角形的性質,解題的關鍵是由MN∥AC,得出兩組對應邊的比相等從而解決問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2010•自貢)如圖,在直角坐標平面內,O為坐標原點,A點的坐標為(1,0),B點在x軸上且在點A的右側,AB=OA,過點A和B作x軸的垂線分別交二次函數(shù)y=x2圖象于點C和D,直線OC交BD于M,直線CD交y軸于點H.記C、D的橫坐標分別為xc,xD,于點H的縱坐標yH
(1)證明:①S△CMD:S梯形ABMC=2:3;②xc•xD=-yH;
(2)若將上述A點坐標(1,0)改為A點坐標(t,0)(t>0),其他條件不變,結論S△CMD:S梯形ABMC=2:3是否仍成立?請說明理由.
(3)若A的坐標(t,0)(t>0),又將條件y=x2改為y=ax2(a>0),其他條件不變,那么xc,xD和yH又有怎樣的數(shù)量關系?寫出關系式,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年四川省自貢市中考數(shù)學試卷(解析版) 題型:解答題

(2010•自貢)如圖,在直角坐標平面內,O為坐標原點,A點的坐標為(1,0),B點在x軸上且在點A的右側,AB=OA,過點A和B作x軸的垂線分別交二次函數(shù)y=x2圖象于點C和D,直線OC交BD于M,直線CD交y軸于點H.記C、D的橫坐標分別為xc,xD,于點H的縱坐標yH
(1)證明:①S△CMD:S梯形ABMC=2:3;②xc•xD=-yH;
(2)若將上述A點坐標(1,0)改為A點坐標(t,0)(t>0),其他條件不變,結論S△CMD:S梯形ABMC=2:3是否仍成立?請說明理由.
(3)若A的坐標(t,0)(t>0),又將條件y=x2改為y=ax2(a>0),其他條件不變,那么xc,xD和yH又有怎樣的數(shù)量關系?寫出關系式,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年浙江省杭州市中考數(shù)學模擬試卷(04)(解析版) 題型:解答題

(2010•自貢)如圖,把一張長方形卡片ABCD放在寬度為10mm的橫格線中,恰好四個頂點都在橫格線上,已知α=32°,求長方形卡片的周長.(參考數(shù)據(jù)sin32°≈0.5cos32°≈0.8tan32°≈0.6)

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《四邊形》(01)(解析版) 題型:選擇題

(2010•自貢)如圖在平面直角坐標系中,□MNEF的兩條對角線ME,NF交于原點O,點F的坐標是(3,2),則點N的坐標是( )

A.(-3,-2)
B.(-3,2)
C.(-2,3)
D.(2,3)

查看答案和解析>>

科目:初中數(shù)學 來源:2010年四川省自貢市中考數(shù)學試卷(解析版) 題型:選擇題

(2010•自貢)如圖所表示的是下面那一個不等式組的解集( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案