(1999•黃岡)某商店購(gòu)進(jìn)一批單價(jià)為16元的日用品,銷售一段時(shí)間后,為了獲得更多利潤(rùn),商店決定提高銷售價(jià)格.經(jīng)試驗(yàn)發(fā)現(xiàn),若按每件20元的價(jià)格銷售時(shí),每月能賣360件;若按每件25元的價(jià)格銷售時(shí),每月能賣210件.假定每月銷售件數(shù)y(件)是價(jià)格x(元/件)的一次函數(shù).
(1)試求y與x之間的關(guān)系式;
(2)在商品不積壓,且不考慮其它因素的條件下,問銷售價(jià)格定為多少時(shí),才能使每月獲得最大利潤(rùn)?每月的最大利潤(rùn)是多少(總利潤(rùn)=總收入-總成本)?
【答案】分析:(1)先根據(jù)題意設(shè)y=kx+b,分別把對(duì)應(yīng)的x=20,y=360;x=25,y=210代入利用待定系數(shù)法求解即可;
(2)根據(jù)“總利潤(rùn)=總收入-總成本”列出關(guān)于每月獲得利潤(rùn)P與x之間的函數(shù)關(guān)系式,整理得出二次函數(shù)P=-30(x-24)2+1920,求其最大值即可.
解答:解:(1)依題意設(shè)y=kx+b,則有

解得k=-30,b=960
∴y=-30x+960(16≤x≤32)(4分)

(2)每月獲得利潤(rùn)P=(-30x+960)(x-16)
=30(-x+32)(x-16)(5分)
=30(-x2+48x-512)
=-30(x-24)2+1920(7分)
∴在16≤x≤32范圍內(nèi),當(dāng)x=24時(shí),P有最大值,最大值為1920.(8分)
答:當(dāng)價(jià)格為24元時(shí),才能使每月獲得最大利潤(rùn),最大利潤(rùn)為1920元.(9分)
點(diǎn)評(píng):主要考查了根據(jù)實(shí)際問題列函數(shù)關(guān)系式的能力.讀懂題意準(zhǔn)確地列出式子是解題的關(guān)鍵,要熟練地運(yùn)用待定系數(shù)法求函數(shù)關(guān)系式,并會(huì)利用二次函數(shù)的最值問題求實(shí)際問題的最大利潤(rùn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:1999年全國(guó)中考數(shù)學(xué)試題匯編《數(shù)據(jù)分析》(01)(解析版) 題型:選擇題

(1999•黃岡)某校在一次學(xué)生演講比賽中,共有7個(gè)評(píng)委,學(xué)生最后得分為去掉一個(gè)最高分和一個(gè)最低分后的平均分.某學(xué)生所得分?jǐn)?shù)為:9.6,9.4,9.6,9.7,9.7,9.5,9.6,那么這組數(shù)據(jù)的眾數(shù)及學(xué)生最后得分分別為( )
A.9.6,9.6
B.9.5,9.6
C.9.6,9.58
D.9.6,9.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:1999年湖北省黃岡市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(1999•黃岡)某商店購(gòu)進(jìn)一批單價(jià)為16元的日用品,銷售一段時(shí)間后,為了獲得更多利潤(rùn),商店決定提高銷售價(jià)格.經(jīng)試驗(yàn)發(fā)現(xiàn),若按每件20元的價(jià)格銷售時(shí),每月能賣360件;若按每件25元的價(jià)格銷售時(shí),每月能賣210件.假定每月銷售件數(shù)y(件)是價(jià)格x(元/件)的一次函數(shù).
(1)試求y與x之間的關(guān)系式;
(2)在商品不積壓,且不考慮其它因素的條件下,問銷售價(jià)格定為多少時(shí),才能使每月獲得最大利潤(rùn)?每月的最大利潤(rùn)是多少(總利潤(rùn)=總收入-總成本)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:1999年湖北省黃岡市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(1999•黃岡)某校在一次學(xué)生演講比賽中,共有7個(gè)評(píng)委,學(xué)生最后得分為去掉一個(gè)最高分和一個(gè)最低分后的平均分.某學(xué)生所得分?jǐn)?shù)為:9.6,9.4,9.6,9.7,9.7,9.5,9.6,那么這組數(shù)據(jù)的眾數(shù)及學(xué)生最后得分分別為( )

查看答案和解析>>

同步練習(xí)冊(cè)答案