精英家教網 > 初中數學 > 題目詳情

如圖,三角板ABC的兩直角邊AC,BC的長分別是40cm和30cm,點G在斜邊AB上,且BG=30cm,將這個三角板以G為中心按逆時針旋轉90°,至△A′B′C′的位置,那么旋轉后兩個三角板重疊部分(四邊形EFGD)的面積為         cm2

144

解析試題分析:由勾股定理得AB===50,
又∵BG=30,
∴AG=AB﹣BG=20,
由△ADG∽△ABC得,==,即==,
解得DG=15,AD=25,
A′D=A′G﹣DG=AG﹣GD=20﹣15=5,
由△A′DE∽△A′B′C′,可知==,
由△A′GF∽△A′C′B′,可知
根據相似三角形面積比等于相似比的平方,可知
S四邊形EFGD=SAFG﹣SADE=SABCSABC=××40×30=144cm2
考點:旋轉的性質;勾股定理;相似三角形的判定與性質.
點評:本題考查了旋轉圖形的面積不變,勾股定理、相似三角形的性質的運用.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,三角板ABC的兩直角邊AC,BC的長分別是40cm和30cm,點G在斜邊AB上,且BG=30cm,將這個三角板以G為中心按逆時針旋轉90°,至△A′B′C′的位置,那么旋轉后兩個三角板重疊部分(四邊形EFGD)的面積為
 
cm2

查看答案和解析>>

科目:初中數學 來源:2013年初中數學單元提優(yōu)測試卷-相似的判定填空題(解析版) 題型:填空題

如圖,三角板ABC的兩直角邊AC,BC的長分別是40cm和30cm,點G在斜邊AB上,且BG=30cm,將這個三角板以G為中心按逆時針旋轉90°,至△A′B′C′的位置,那么旋轉后兩個三角板重疊部分(四邊形EFGD)的面積為         cm2

 

查看答案和解析>>

科目:初中數學 來源:第26章《圓》中考題集(04):26.1 旋轉(解析版) 題型:填空題

如圖,三角板ABC的兩直角邊AC,BC的長分別是40cm和30cm,點G在斜邊AB上,且BG=30cm,將這個三角板以G為中心按逆時針旋轉90°,至△A′B′C′的位置,那么旋轉后兩個三角板重疊部分(四邊形EFGD)的面積為    cm2

查看答案和解析>>

科目:初中數學 來源:2010年山東省菏澤市中考數學試卷(解析版) 題型:填空題

(2010•菏澤)如圖,三角板ABC的兩直角邊AC,BC的長分別是40cm和30cm,點G在斜邊AB上,且BG=30cm,將這個三角板以G為中心按逆時針旋轉90°,至△A′B′C′的位置,那么旋轉后兩個三角板重疊部分(四邊形EFGD)的面積為    cm2

查看答案和解析>>

同步練習冊答案