(2008•遼寧)如圖,在平面直角坐標(biāo)系中,直線y=-x-與x軸交于點A,與y軸交于點C,拋物線y=ax2-x+c(a≠0)經(jīng)過A,B,C三點.
(1)求過A,B,C三點拋物線的解析式并求出頂點F的坐標(biāo);
(2)在拋物線上是否存在點P,使△ABP為直角三角形?若存在,直接寫出P點坐標(biāo);若不存在,請說明理由;
(3)試探究在直線AC上是否存在一點M,使得△MBF的周長最。咳舸嬖,求出M點的坐標(biāo);若不存在,請說明理由.

【答案】分析:(1)拋物線解析式中有兩個待定系數(shù)a,c,根據(jù)直線AC解析式求點A、C坐標(biāo),代入拋物線解析式即可;
(2)分析不難發(fā)現(xiàn),△ABP的直角頂點只可能是P,根據(jù)已知條件可證AC2+BC2=AB2,故點C滿足題意,根據(jù)拋物線的對稱性,點C關(guān)于拋物線對稱軸的對稱點也符合題意;
(3)由于B,F(xiàn)是定點,BF的長一定,實際上就是求BM+FM最小,找出點B關(guān)于直線AC的對稱點B',連接B'F,交AC于點M,點M即為所求,由(2)可知,BC⊥AC,延長BC到B',使BC=B'C,利用中位線的性質(zhì)可得B'的坐標(biāo),從而可求直線B'F的解析式,再與直線AC的解析式聯(lián)立,可求M點坐標(biāo).
解答:解:(1)∵直線y=-x-與x軸交于點A,與y軸交于點C
∴點A(-1,0),C(0,-
∵點A,C都在拋物線上,


∴拋物線的解析式為y=x2-x-
∴頂點F(1,-).

(2)存在:
p1(0,-),p2(2,-).

(3)存在
理由:
解法一:
延長BC到點B′,使B′C=BC,連接B′F交直線AC于點M,則點M就是所求的點,
∵過點B′作B′H⊥AB于點H,
∵B點在拋物線y=x2-x-上,
∴B(3,0),
在Rt△BOC中,tan∠OBC=
∴∠OBC=30°,BC=2
在Rt△B′BH中,B′H=BB′=2
BH=B′H=6,∴OH=3,
∴B′(-3,-2).
設(shè)直線B′F的解析式為y=kx+b,
,
解得,
∴y=

解得,
∴M(
∴在直線AC上存在點M,使得△MBF的周長最小,此時M().
解法二:
過點F作AC的垂線交y軸于點H,則點H為點F關(guān)于直線AC的對稱點,連接BH交AC于點M,則點M
即為所求.
過點F作FG⊥y軸于點G,則OB∥FG,BC∥FH,
∴∠BOC=∠FGH=90°,∠BCO=∠FHG
∴∠HFG=∠CBO
同方法一可求得B(3,0)
在Rt△BOC中,tan∠OBC=
∴∠OBC=30°,可求得GH=GC=
∴GF為線段CH的垂直平分線,可證得△CFH為等邊三角形
∴AC垂直平分FH
即點H為點F關(guān)于AC對稱點,
∴H(0,-
設(shè)直線BH的解析式為y=kx+b,由題意得,,
解得,
∴y=,
,
解得,
∴M(),
∴在直線AC上存在點M,使得△MBF的周長最小,此時M().
點評:考查代數(shù)幾何的綜合運(yùn)用能力,體現(xiàn)數(shù)學(xué)知識的內(nèi)在聯(lián)系和不可分割的特點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《圓》(05)(解析版) 題型:填空題

(2008•遼寧)如圖,直線y=x+與x軸、y軸分別相交于A,B兩點,圓心P的坐標(biāo)為(1,0),⊙P與y軸相切于點O.若將⊙P沿x軸向左移動,當(dāng)⊙P與該直線相交時,橫坐標(biāo)為整數(shù)的點P有    個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2008•遼寧)如圖,在平面直角坐標(biāo)系中,直線y=-x-與x軸交于點A,與y軸交于點C,拋物線y=ax2-x+c(a≠0)經(jīng)過A,B,C三點.
(1)求過A,B,C三點拋物線的解析式并求出頂點F的坐標(biāo);
(2)在拋物線上是否存在點P,使△ABP為直角三角形?若存在,直接寫出P點坐標(biāo);若不存在,請說明理由;
(3)試探究在直線AC上是否存在一點M,使得△MBF的周長最?若存在,求出M點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《平面直角坐標(biāo)系》(02)(解析版) 題型:填空題

(2008•遼寧)如圖,直線y=x+與x軸、y軸分別相交于A,B兩點,圓心P的坐標(biāo)為(1,0),⊙P與y軸相切于點O.若將⊙P沿x軸向左移動,當(dāng)⊙P與該直線相交時,橫坐標(biāo)為整數(shù)的點P有    個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年遼寧省十二市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•遼寧)如圖,在平面直角坐標(biāo)系中,直線y=-x-與x軸交于點A,與y軸交于點C,拋物線y=ax2-x+c(a≠0)經(jīng)過A,B,C三點.
(1)求過A,B,C三點拋物線的解析式并求出頂點F的坐標(biāo);
(2)在拋物線上是否存在點P,使△ABP為直角三角形?若存在,直接寫出P點坐標(biāo);若不存在,請說明理由;
(3)試探究在直線AC上是否存在一點M,使得△MBF的周長最小?若存在,求出M點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案