【題目】如圖1,在中,,,,點(diǎn),分別是邊,的中點(diǎn),連接.將繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn),記旋轉(zhuǎn)角為

1)問(wèn)題發(fā)現(xiàn)

①當(dāng)時(shí), ;②當(dāng)時(shí),

2)拓展探究

試判斷:當(dāng)時(shí),的大小有無(wú)變化?請(qǐng)僅就圖2的情況給出證明.

3)問(wèn)題解決

當(dāng)旋轉(zhuǎn)至A、BE三點(diǎn)共線時(shí),直接寫出線段的長(zhǎng).

【答案】1)①;②;(2)無(wú)變化,理由見(jiàn)解析; 3

【解析】

1)①當(dāng)α=0°時(shí),在RtABC中,設(shè)AB=1,由勾股定理,求出AC的值是多少;然后根據(jù)點(diǎn)DE分別是邊BC、AC的中點(diǎn),分別求出AE、BD的大小,即可求出的值是多少;

α=180°時(shí),可得ABDE,根據(jù)根據(jù)平行線分線段成比例定理可得 ,即求出的值是多少即可;
2)首先根據(jù)圖1判定,再判斷出,判斷出,然后由相似三角形的對(duì)應(yīng)邊成比例,求得答案;
3)分兩種情況分析,E點(diǎn)在線段AB的延長(zhǎng)線上和E點(diǎn)在線段AB上,然后利用勾股定理分別求解即可求得答案.

1)∵,

①當(dāng)時(shí),

∵點(diǎn),分別是邊的中點(diǎn)

AE=,BD=1

故答案為:

②當(dāng)時(shí),如圖:可得:ABDE

故答案為:

2)無(wú)變化.

在圖1中,∵的中位線,

,

如圖2,∵在旋轉(zhuǎn)過(guò)程中形狀大小不變,

仍然成立

又∵,

中,

的大小不變

3)如圖3,當(dāng)E點(diǎn)在線段AB的延長(zhǎng)線上,

AB=2,則BC=1AC= , ,∠B=90°

∴∠EBC=90°

AE=AB+BE=
由(2),可得:

如圖4,E點(diǎn)在線段AB上,

AB=2,則BC=1AC= ,∠B=90°

∴∠EBC=90°

AE=AB-BE=

由(2),可得:

BD的長(zhǎng)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC,DAB上一點(diǎn),以點(diǎn)D為圓心,AC為半徑畫弧交BA的延長(zhǎng)線于點(diǎn)E,連接CD,作EFCD,交∠EAC的平分線于點(diǎn)F,連接CF

1)求證:△BCD≌△AFE;

2)若AC6,∠BAC30°,求四邊形CDEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)在平行四邊形的對(duì)角線上,過(guò)點(diǎn)、分別作、的平行線相交于點(diǎn),連接,

1)求證:四邊形是菱形;

2)若,,,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,若點(diǎn)和點(diǎn)關(guān)于軸對(duì)稱,點(diǎn)和點(diǎn)關(guān)于直線對(duì)稱,則稱點(diǎn)是點(diǎn)關(guān)于軸,直線的二次對(duì)稱點(diǎn).

(1)如圖1,點(diǎn)

①若點(diǎn)是點(diǎn)關(guān)于軸,直線的二次對(duì)稱點(diǎn),則點(diǎn)的坐標(biāo)為_(kāi)_______;

②若點(diǎn)是點(diǎn)關(guān)于軸,直線:的二次對(duì)稱點(diǎn),則的值為_(kāi)______;

③若點(diǎn)是點(diǎn)關(guān)于軸,直線的二次對(duì)稱點(diǎn),則直線的表達(dá)式為_(kāi)_________;

(2)如圖2,的半徑為1.若上存在點(diǎn),使得點(diǎn)是點(diǎn)關(guān)于軸,直績(jī):的二次對(duì)稱點(diǎn),且點(diǎn)在射線上,的取值范圍是________;

(3)軸上的動(dòng)點(diǎn),的半徑為2,若上存在點(diǎn),使得點(diǎn)是點(diǎn)關(guān)于軸,直線的二次對(duì)稱點(diǎn),且點(diǎn)軸上,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠B=90°,∠BAC的平分線交BC于點(diǎn)D,以D為圓心,D長(zhǎng)為半徑作作⊙D.

⑴求證:AC是⊙D的切線.

⑵設(shè)AC與⊙D切于點(diǎn)EDB=1,連接DE,BFEF.

①當(dāng)∠BAD= 時(shí),四邊形BDEF為菱形;

②當(dāng)AB= 時(shí),CDE為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=4,BC=2,EAB的中點(diǎn),直線平行于直線EC,且直線與直線EC之間的距離為2,點(diǎn)F在矩形ABCD邊上,將矩形ABCD沿直線EF折疊,使點(diǎn)A恰好落在直線上, 則DF的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將二次函數(shù)yx25x6x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個(gè)新圖象,若直線y2x+b與這個(gè)新圖象有3個(gè)公共點(diǎn),則b的值為(  )

A. 或﹣12B. 2C. 122D. 或﹣12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線與反比例函數(shù)的圖像在第一象限有一個(gè)公共點(diǎn),其橫坐標(biāo)為1,則一次函數(shù)的圖像可能是( )

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB3,BC4,點(diǎn)E為射線CB上一動(dòng)點(diǎn)(不與點(diǎn)C重合),將△CDE沿DE所在直線折疊,點(diǎn)C落在點(diǎn)C′處,連接AC′,當(dāng)△ACD為直角三角形時(shí),CE的長(zhǎng)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案