如圖,若∠C=90°,AD=DB,ED⊥AB,AB=20,AC=12,則四邊形ADEC的面積為( 。
分析:連接AE,求出AE=BE,由勾股定理求出BC=16,在Rt△ACE中,由勾股定理求出AE=BE=
25
2
,在Rt△ADE中,由勾股定理求出DE=
15
2
,根據(jù)四邊形ADEC的面積S=S△ACE+S△ADE代入求出即可.
解答:解:連接AE.
∵AD=DB,ED⊥AB,
∴AE=BE,
在Rt△ACB中,∠C=90°,AB=20,AC=12,由勾股定理得:BC=16,
在Rt△ACE中,∠C=90°,由勾股定理得:AC2+CE2=AE2,
∴122+(16-AE)2=AE2,
解得AE=BE=
25
2
,
∵AD=BD=
1
2
AB=10,
在Rt△ADE中,由勾股定理得:DE=
(
25
2
)2-102
=
15
2
,
∴四邊形ADEC的面積S=S△ACE+S△ADE=
1
2
×12×(16-
25
2
)+
1
2
×10×
15
2
=58.5.
故選B.
點評:本題考查了勾股定理,三角形的面積,線段垂直平分線的性質(zhì)的應(yīng)用,關(guān)鍵是求出各個線段的長.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

現(xiàn)有邊長為180厘米的正方形鐵皮,準(zhǔn)備將它設(shè)計并制成一個開口的水槽,使水槽能通過的水的流量最大.
某校九年級(2)班數(shù)學(xué)興趣小組經(jīng)討論得出結(jié)論:在水流速度一定的情況下,水槽的橫截面面積越大,則通過水槽的水的流量越大.為此,他們對水槽的橫截面,進行了如下探索:
(1)方案①:把它折成橫截面為矩形的水槽,如圖.
若∠ABC=90°,設(shè)BC=x厘米,該水槽的橫截面面積為y厘米2,請你寫出y關(guān)于x的函數(shù)關(guān)系式(不必寫出x的取值范圍),并求出當(dāng)x取何值時,y的值最大,最大值又是多少?
方案②:把它折成橫截面為等腰梯形的水槽,如圖.
若∠ABC=1 20°,請你求出該水槽的橫截面面積的最大值,并與方案①中的y的最大值比較大。
(2)假如你是該興趣小組中的成員,請你再提供一種方案,使你所設(shè)計的水槽的橫截面精英家教網(wǎng)面積更大.畫出你設(shè)計的草圖,標(biāo)上必要的數(shù)據(jù)(不要求寫出解答過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

填空或解答:點B、C、E在同一直線上,點A、D在直線CE的同側(cè),AB=AC,EC=ED,∠BAC=∠CED,直線AE、BD交于點F.
(1)如圖①,若∠BAC=60°,則∠AFB=
 
;如圖②,若∠BAC=90°,則∠AFB=
 
;
(2)如圖③,若∠BAC=α,則∠AFB=
 
(用含α的式子表示);
(3)將圖③中的△ABC繞點C旋轉(zhuǎn)(點F不與點A、B重合),得圖④或圖⑤.在圖④中,∠AFB與∠α的數(shù)量關(guān)系是∠AFB=90°-
12
α
;在圖⑤中,∠AFB與∠α的數(shù)量關(guān)系是
 
.請你任選其中一個結(jié)論證明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,若∠C=90°,∠A=60°,AC=2m,則AB的長是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年湖北省武漢市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•武漢)填空或解答:點B、C、E在同一直線上,點A、D在直線CE的同側(cè),AB=AC,EC=ED,∠BAC=∠CED,直線AE、BD交于點F.
(1)如圖①,若∠BAC=60°,則∠AFB=______;如圖②,若∠BAC=90°,則∠AFB=______;
(2)如圖③,若∠BAC=α,則∠AFB=______(用含α的式子表示);
(3)將圖③中的△ABC繞點C旋轉(zhuǎn)(點F不與點A、B重合),得圖④或圖⑤.在圖④中,∠AFB與∠α的數(shù)量關(guān)系是∠AFB=90°;在圖⑤中,∠AFB與∠α的數(shù)量關(guān)系是______.請你任選其中一個結(jié)論證明.

查看答案和解析>>

同步練習(xí)冊答案