【題目】如圖,拋物線y=ax2+6x+c交x軸于A,B兩點,交y軸于點C.直線y=x﹣5經過點B,C.
(1)求拋物線的解析式;
(2)過點A的直線交直線BC于點M.
①當AM⊥BC時,過拋物線上一動點P(不與點B,C重合),作直線AM的平行線交直線BC于點Q,若以點A,M,P,Q為頂點的四邊形是平行四邊形,求點P的橫坐標;
②連接AC,當直線AM與直線BC的夾角等于∠ACB的2倍時,請直接寫出點M的坐標.
【答案】(1)拋物線解析式為y=﹣x2+6x﹣5;(2)①P點的橫坐標為4或或;②點M的坐標為(,﹣)或(,﹣).
【解析】(1)利用一次函數解析式確定C(0,-5),B(5,0),然后利用待定系數法求拋物線解析式;
(2)①先解方程-x2+6x-5=0得A(1,0),再判斷△OCB為等腰直角三角形得到∠OBC=∠OCB=45°,則△AMB為等腰直角三角形,所以AM=2,接著根據平行四邊形的性質得到PQ=AM=2,PQ⊥BC,作PD⊥x軸交直線BC于D,如圖1,利用∠PDQ=45°得到PD=PQ=4,設P(m,-m2+6m-5),則D(m,m-5),討論:當P點在直線BC上方時,PD=-m2+6m-5-(m-5)=4;當P點在直線BC下方時,PD=m-5-(-m2+6m-5),然后分別解方程即可得到P點的橫坐標;
②作AN⊥BC于N,NH⊥x軸于H,作AC的垂直平分線交BC于M1,交AC于E,如圖2,利用等腰三角形的性質和三角形外角性質得到∠AM1B=2∠ACB,再確定N(3,-2),
AC的解析式為y=5x-5,E點坐標為(,-),利用兩直線垂直的問題可設直線EM1的解析式為y=-x+b,把E(,-)代入求出b得到直線EM1的解析式為y=-x-,則解方程組得M1點的坐標;作直線BC上作點M1關于N點的對稱點M2,如圖2,利用對稱性得到∠AM2C=∠AM1B=2∠ACB,設M2(x,x-5),根據中點坐標公式得到3=,然后求出x即可得到M2的坐標,從而得到滿足條件的點M的坐標.
(1)當x=0時,y=x﹣5=﹣5,則C(0,﹣5),
當y=0時,x﹣5=0,解得x=5,則B(5,0),
把B(5,0),C(0,﹣5)代入y=ax2+6x+c得
,解得,
∴拋物線解析式為y=﹣x2+6x﹣5;
(2)①解方程﹣x2+6x﹣5=0得x1=1,x2=5,則A(1,0),
∵B(5,0),C(0,﹣5),
∴△OCB為等腰直角三角形,
∴∠OBC=∠OCB=45°,
∵AM⊥BC,
∴△AMB為等腰直角三角形,
∴AM=AB=×4=2,
∵以點A,M,P,Q為頂點的四邊形是平行四邊形,AM∥PQ,
∴PQ=AM=2,PQ⊥BC,
作PD⊥x軸交直線BC于D,如圖1,則∠PDQ=45°,
∴PD=PQ=×2=4,
設P(m,﹣m2+6m﹣5),則D(m,m﹣5),
當P點在直線BC上方時,
PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1,m2=4,
當P點在直線BC下方時,
PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=,m2=,
綜上所述,P點的橫坐標為4或或;
②作AN⊥BC于N,NH⊥x軸于H,作AC的垂直平分線交BC于M1,交AC于E,如圖2,
∵M1A=M1C,
∴∠ACM1=∠CAM1,
∴∠AM1B=2∠ACB,
∵△ANB為等腰直角三角形,
∴AH=BH=NH=2,
∴N(3,﹣2),
易得AC的解析式為y=5x﹣5,E點坐標為(,﹣,
設直線EM1的解析式為y=﹣x+b,
把E(,﹣)代入得﹣+b=﹣,解得b=﹣,
∴直線EM1的解析式為y=﹣x﹣
解方程組得,則M1(,﹣);
作直線BC上作點M1關于N點的對稱點M2,如圖2,則∠AM2C=∠AM1B=2∠ACB,
設M2(x,x﹣5),
∵3=
∴x=,
∴M2(,﹣).
綜上所述,點M的坐標為(,﹣)或(,﹣).
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+2x+3與x軸交于點A,C(點A在點C的右側),與y軸交于點B
(1)求點A,B的坐標及直線AB的函數表達式;
(2)若直線l⊥x軸,且直線l在第一象限內與拋物線交于點M,與直線AB交于點N,求點M與點N之間的距離的最大值,并求出此時點M,N的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某品牌手機去年每臺的售價y(元)與月份x之間滿足函數關系:y=﹣50x+2600,去年的月銷量p(萬臺)與月份x之間成一次函數關系,其中1﹣6月份的銷售情況如下表:
月份(x) | 1月 | 2月 | 3月 | 4月 | 5月 | 6月 |
銷售量(p) | 3.9萬臺 | 4.0萬臺 | 4.1萬臺 | 4.2萬臺 | 4.3萬臺 | 4.4萬臺 |
(1)求p關于x的函數關系式;
(2)求該品牌手機在去年哪個月的銷售金額最大?最大是多少萬元?
(3)今年1月份該品牌手機的售價比去年12月份下降了m%,而銷售量也比去年12月份下降了1.5m%.今年2月份,經銷商決定對該手機以1月份價格的“八折”銷售,這樣2月份的銷售量比今年1月份增加了1.5萬臺.若今年2月份這種品牌手機的銷售額為6400萬元,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=x與雙曲線y=(x>0)交于點A,將直線y=x向下平移個6單位后,與雙曲線y=(x>0)交于點B,與x軸交于點C,則C點的坐標為_____;若=2,則k=_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,大樓AB右側有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測得障礙物邊緣點C的俯角為30°,測得大樓頂端A的仰角為45°(點B,C,E在同一水平直線上),已知AB=80 m,DE=10 m,求障礙物B,C兩點間的距離.(結果精確到0.1 m)(參考數據: ≈1.414,、≈1.732)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某數學興趣小組在活動課上測量學校旗桿的高度.已知小亮站著測量,眼睛與地面的距離(AB)是1.7米,看旗桿頂部E的仰角為30°;小敏蹲著測量,眼睛與地面的距離(CD)是0.7米,看旗桿頂部E的仰角為45°.兩人相距5米且位于旗桿同側(點B、D、F在同一直線上).
(1)求小敏到旗桿的距離DF.(結果保留根號)
(2)求旗桿EF的高度.(結果保留整數,參考數據:≈1.4,≈1.7)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公樓頂端A測得旗桿頂端E的俯角α是45°,旗桿底端D到大樓前梯坎底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1:,則大樓AB的高度約為( 。ň_到0.1米,參考數據:≈1.41,≈1.73,≈2.45)
A. 30.6 B. 32.1 C. 37.9 D. 39.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一次中學生田徑運動會上,根據參加男子跳高初賽的運動員的成績(單位:m),繪制出如下的統(tǒng)計圖①和圖②.請根據相關信息,解答下列問題:
(Ⅰ)圖①中的值為__________;
(Ⅱ)求統(tǒng)計的這組初賽成績數據的平均數、眾數和中位數;
(Ⅲ)根據這組初賽成績,由高到低確定10人能進入復賽,請直接寫出初賽成績?yōu)?/span>的運動員能否進入復賽.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com