若一次函數(shù)y=a1x+b1(a1≠0,a1、b1是常數(shù))與y=a2x+b2(a2≠0,a2、b2是常數(shù)),滿足a1+a2=0且b1+b2=0,則稱這兩函數(shù)是對稱函數(shù).
(1)當(dāng)函數(shù)y=mx-3與y=2x+n是對稱函數(shù),求m和n的值;
(2)在平面直角坐標(biāo)系中,一次函數(shù)y=2x+3圖象與x軸交于點(diǎn)A、與y軸交于點(diǎn)B,點(diǎn)C與點(diǎn)B 關(guān)于x軸對稱,過點(diǎn)A、C的直線解析式是y=kx+b,求證:函數(shù)y=2x+3與y=kx+b是對稱函數(shù).
解:(1)∵函數(shù)y=mx-3與y=2x+n是對稱函數(shù),
∴由題意可知
,
解得
;
(2)對于一次函數(shù)y=2x+3,
令x=0,解得y=3;令y=0,解得x=-
,
∴A(-
,0),B(0,3),
∵點(diǎn)C與點(diǎn)B關(guān)于x軸對稱,
∴C(0,-3),
將A與C的坐標(biāo)代入y=kx+b中得:
,
解得:
,
∴直線AC的解析式為y=-2x-3,
∵2+(-2)=0,3+(-3)=0,
∴函數(shù)y=2x+3與y=kx+b是對稱函數(shù).
分析:(1)根據(jù)題中對稱函數(shù)的定義,得到m+2=0,-3+n=0,即可求出m與n的值;
(2)對于一次函數(shù)y=2x+3,令x=0求出y的值,確定出B的坐標(biāo);令y=0求出x的值,確定出A的坐標(biāo),再由C與B關(guān)于x軸對稱,求出C的坐標(biāo),將A與C的坐標(biāo)代入y=kx+b中,得到關(guān)于k與b的方程組,求出方程組的解得到k=-2,b=-3,確定出直線AC的解析式為y=-2x-3,由(-2)+2=0,(-3)+3=0,根據(jù)題中對稱函數(shù)的定義,即可得證.
點(diǎn)評:此題考查了一次函數(shù)綜合題,屬于新定義題型,弄清題中的新定義是解本題的關(guān)鍵.
科目:初中數(shù)學(xué)
來源:2012年福建省廈門市海滄區(qū)初中學(xué)業(yè)質(zhì)量檢查數(shù)學(xué)試卷(解析版)
題型:解答題
若一次函數(shù)y=a1x+b1(a1≠0,a1、b1是常數(shù))與y=a2x+b2(a2≠0,a2、b2是常數(shù)),滿足a1+a2=0且b1+b2=0,則稱這兩函數(shù)是對稱函數(shù).
(1)當(dāng)函數(shù)y=mx-3與y=2x+n是對稱函數(shù),求m和n的值;
(2)在平面直角坐標(biāo)系中,一次函數(shù)y=2x+3圖象與x軸交于點(diǎn)A、與y軸交于點(diǎn)B,點(diǎn)C與點(diǎn)B 關(guān)于x軸對稱,過點(diǎn)A、C的直線解析式是y=kx+b,求證:函數(shù)y=2x+3與y=kx+b是對稱函數(shù).
查看答案和解析>>