在等腰△ABC中,AB=AC,AC腰上的中線BD將三角形周長分為15和21兩部分,則這個(gè)三角形的底邊長為________.

16或8
分析:本題由題意可知有兩種情況,AB+AD=15或AB+AD=21.從而根據(jù)等腰三角形的性質(zhì)及三角形三邊關(guān)系可求出底邊為8或16.
解答:解:∵BD是等腰△ABC的中線,可設(shè)AD=CD=x,則AB=AC=2x,
又知BD將三角形周長分為15和21兩部分,
∴可知分為兩種情況
①AB+AD=15,即3x=15,解得x=5,此時(shí)BC=21-x=21-5=16;
②AB+AD=21,即3x=21,解得x=7;此時(shí)等腰△ABC的三邊分別為14,14,8.
經(jīng)驗(yàn)證,這兩種情況都是成立的.
∴這個(gè)三角形的底邊長為8或16.
故答案為:16或8.
點(diǎn)評(píng):本題主要考查等腰三角形的性質(zhì)及三角形三邊關(guān)系;注意:求出的結(jié)果一定要檢驗(yàn)時(shí)符合三角形三邊性質(zhì).分類討論是正確解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖所示,在等腰△ABC中,點(diǎn)D是BC的中點(diǎn),DE⊥AB,DF⊥AC,垂足分別為E、F,圖中有幾對(duì)全等三角形( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•閘北區(qū)二模)如圖,在等腰△ABC中,底邊BC的中點(diǎn)是點(diǎn)D,底角的正切值是
1
3
,將該等腰三角形繞其腰AC上的中點(diǎn)M旋轉(zhuǎn),使旋轉(zhuǎn)后的點(diǎn)D與A重合,得到△A′B′C′,如果旋轉(zhuǎn)后的底邊B′C′與BC交于點(diǎn)N,那么∠ANB的正切值等于
3
4
3
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在等腰△ABC中,AB=AC,∠A=80°,則一腰上的高CD與底邊BC的夾角為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰△ABC中,AB=AC=10cm,直線DE垂直平分AB,分別交AB、AC于D、E兩點(diǎn).若BC=8cm,則△BCE的周長是
18
18
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰△ABC中,∠ABC=90°,D為底邊AC中點(diǎn),過D點(diǎn)作DE⊥DF,交AB于E,交BC于F.若AE=12,F(xiàn)C=5,
(1)試說明DE=DF;
(2)求EF長.

查看答案和解析>>

同步練習(xí)冊(cè)答案