已知:二次函數(shù)y=x2+bx+c與x軸相交于A(x1,0)、B(x2,0)兩點,其頂點坐標為P(),AB=|x1-x2|,若S△APB=1,則b與c的關系式是( 。
A.b2-4c+1=0B.b2-4c-1=0C.b2-4c+4=0D.b2-4c-4=0
D

試題分析:由于拋物線頂點坐標為P(,),AB=|x1-x2|,根據(jù)根與系數(shù)的關系把AB的長度用b、c表示,而S△APB=1,然后根據(jù)三角形的面積公式就可以建立關于b、c的等式.







故選D.
點評:本題綜合性強,難度較大,是中考常見題,題目比較典型.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出下列結論:①b2-4ac>0;②2a+b<0;③4a-2b+c=0;④ a︰b︰c= -1︰2︰3.其中正確的是(    )
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線軸相交于點、,且經(jīng)過點(5,4).該拋物線頂點為

(1)求的值和該拋物線頂點的坐標.
(2)求的面積;
(3)若將該拋物線先向左平移4個單位,再向上平移2個單位,求出平移后拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

2012年7月6日在湖南省展覽館舉行了長沙動漫展,很多中學生也對動漫產(chǎn)生了濃厚
的興趣,某動漫公司決定在假期舉行一次中學生動漫畫展,經(jīng)調查發(fā)現(xiàn),活動最低票價
為10元,如果以10元票價開放,平均每天有100個學生來觀看,若票價每提高1元,
則相應減少10個參觀者。
(1)(4分)寫出平均每天觀看動漫展的學生人數(shù)y(單位:人)與票價x (x為整數(shù),單位:元)之間的關系;
(2)(6分)如果要使每天總收入為910元,票價應定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知二次函數(shù)的圖象如圖所示,有下列5個結論:

;②;③;
;⑤  (
其中正確的結論有
A.2個B.3個C.4個D.5個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù),是不為0的常數(shù).
(1)除0以外,不論取何值時,這個二次函數(shù)的圖像一定會經(jīng)過兩個定點,請你求出這兩個定點;
(2)如果該二次函數(shù)的頂點不在直線的右側,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

一快餐店試銷某種套餐,試銷一段時間后發(fā)現(xiàn),每份套餐的成本為5元,該店每天固定支出費用為600元(不含套餐成本),若每份售價不超過10元,每天可銷售400份;若每份超過10元,每提高1元,每天的銷售量就減少40份,為了便于結算,每份套餐的售價X(元)取整數(shù),用Y(元)表示該店日凈收入,(日凈收入=每天的銷售額—套餐成本—每天固定支出)
(1)求Y與X之間的函數(shù)關系式;
(2)若每分套餐的售價不超過10元,要使該店日凈收入不少于800元,那么每份售價最少不低于多少元?
(3)該店既要吸引顧客,使每天銷售量較大,又要有較高的日凈收入。按此要求,每份套餐的售價應定為多少元?此時日凈收入為多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠A=90º,AB=6cm,AC=8cm,D、E分別是邊AB、AC的中點,點P從點D出發(fā)沿DE方向以1cm/s的速度運動,過點P作PQ⊥BC于Q,過點Q作QR∥BA交AC于R、交DE于G,當點Q與點C重合時,點P停止運動.設點P運動時間為ts.

(1)點D到BC的距離DH的長是     ;
(2)當四邊形BQGD是菱形時,t=     ,S△EGR=     ;
(3)令QR=y(tǒng),求y關于t的函數(shù)關系式(不要求寫出自變量的取值范圍);
(4)是否存在點P,使△PQR為等腰三角形?若存在,請求出所有滿足要求的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,如圖,將若干個邊長為的正方形并排組成矩形OABC,相鄰兩邊OA、OC分別落在y軸的正半軸和x軸的負半軸上,將這些正方形順時針繞點O旋轉135°得到相應矩形OA′B′C′,二次函數(shù)y=ax2+bx(a≠0)過點O、B′、C′.

(1)如圖,當正方形個數(shù)為1時,填空:點B′坐標為        ,點C′坐標為            ,二次函數(shù)的關系式為                         ,此時拋物線的對稱軸方程為                      ;

(2)如圖,當正方形個數(shù)為2時,求y=ax2+bx+c(a≠0)圖像的對稱軸;

(3)當正方形個數(shù)為2013時,求y=ax2+bx+c(a≠0)圖像的對稱軸;
(4)當正方形個數(shù)為n個時,請直接寫出:用含n的代數(shù)式來表示y=ax2+bx+c(a≠0)圖像的對稱軸。

查看答案和解析>>

同步練習冊答案