【題目】若關(guān)于x的分式方程 無解,則m的值為( )
A.-1.5
B.1
C.-1.5或2
D.-0.5或-1.5

【答案】D
【解析】解:方程兩邊都乘以x(x-3)得:(2m+x)x-x(x-3)=2(x-3),
即(2m+1)x=-6,
分兩種情況考慮:
①∵當(dāng)2m+1=0時,此方程無解,
∴此時m=-0.5,
②∵關(guān)于x的分式方程 無解,
∴x=0或x-3=0,
即x=0,x=3,
當(dāng)x=0時,代入(2m+1)x=-6得:0=-6,
解得:此方程無解;
當(dāng)x=3時,代入(2m+1)x=-6得:(2m+1)×3=-6,
解得:m=-1.5,
∴m的值是-0.5或-1.5,
故選D.
【考點(diǎn)精析】通過靈活運(yùn)用去分母法和分式方程的增根,掌握先約后乘公分母,整式方程轉(zhuǎn)化出.特殊情況可換元,去掉分母是出路.求得解后要驗(yàn)根,原留增舍別含糊;使方程的分母為0的解稱為原方程的增根即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,我們把對角線互相垂直的四邊形叫做垂美四邊形.

(1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由.

(2)性質(zhì)探究:試探索垂美四邊形ABCD兩組對邊AB,CD與BC,AD之間的數(shù)量關(guān)系.
猜想結(jié)論:(要求用文字語言敘述)
寫出證明過程(先畫出圖形,寫出已知、求證).
(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是(
A.直角三角形
B.正五邊形
C.正方形
D.等腰梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)為C(1,4),交x軸于A、B兩點(diǎn),交y軸于點(diǎn)D,其中點(diǎn)B的坐標(biāo)為(3,0).

(1)求拋物線的解析式;
(2)如圖2,過點(diǎn)A的直線與拋物線交于點(diǎn) E,交y軸于點(diǎn)F,其中點(diǎn)E的橫坐標(biāo)為2,若直線PQ為拋物線的對稱軸,點(diǎn)G為直線 PQ上的一動點(diǎn),則x軸上是否存在一點(diǎn)H,使D、G,H、F四點(diǎn)所圍成的四邊形周長最?若存在,求出這個最小值及點(diǎn)G、H的坐標(biāo);若不存在,請說明理由;
(3)如圖3,在拋物線上是否存在一點(diǎn)T,過點(diǎn)T作x軸的垂線,垂足為點(diǎn)M,過點(diǎn)M作MN∥BD,交線段AD于點(diǎn)N,連接MD,使△DNM∽△BMD?若存在,求出點(diǎn)T的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某品牌電風(fēng)扇銷售量的情況,對某商場5月份該品牌甲、乙、丙三種型號的電風(fēng)扇銷售量進(jìn)行統(tǒng)計,繪制如下兩個統(tǒng)計圖(均不完整).請你結(jié)合圖中的信息,解答下列問題:
(1)該商場5月份售出這種品牌的電風(fēng)扇共多少臺?
(2)若該商場計劃訂購這三種型號的電風(fēng)扇共2000臺,根據(jù)5月份銷售量的情況,求該商場應(yīng)訂購丙種型號電風(fēng)扇多少臺比較合理?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解該校七年級學(xué)生的身高情況,抽樣調(diào)查了部分同學(xué),將所得數(shù)據(jù)處理后,制成扇形統(tǒng)計圖和頻數(shù)分布直方圖(部分)如下(每組只含最低值不含最高值,身高單位:cm,測量時精確到1cm):

(1)請根據(jù)所提供的信息計算身高在160~165cm范圍內(nèi)的學(xué)生人數(shù),并補(bǔ)全頻數(shù)分布直方圖;
(2)樣本的中位數(shù)在統(tǒng)計圖的哪個范圍內(nèi)?
(3)如果上述樣本的平均數(shù)為157cm,方差為0.8;該校八年級學(xué)生身高的平均數(shù)為159cm,方差為0.6,那么(填“七年級”或“八年級”)學(xué)生的身高比較整齊.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,對角線AC,BD相交于點(diǎn)O,下列結(jié)論中: ①∠ABC=∠ADC;
②AC與BD相互平分;
③AC,BD分別平分四邊形ABCD的兩組對角;
④四邊形ABCD的面積S= ACBD.
正確的是(填寫所有正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABOC的頂點(diǎn)O在坐標(biāo)原點(diǎn),頂點(diǎn)B,C分別在x,y軸的正半軸上,頂點(diǎn)A在反比例函數(shù)y= (k為常數(shù),k>0,x>0)的圖象上,將矩形ABOC繞點(diǎn)A按逆時針反向旋轉(zhuǎn)90°得到矩形AB′O′C′,若點(diǎn)O的對應(yīng)點(diǎn)O′恰好落在此反比例函數(shù)圖象上,則 的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD與四邊形AECF都是菱形,點(diǎn)E、F在BD上.已知∠BAD=120°,∠EAF=30°,則 =

查看答案和解析>>

同步練習(xí)冊答案