【題目】如圖,△ABC是等邊三角形,AD是角平分線,△ADE是等邊三角形,下列結(jié)論:①AD⊥BC;②EF=FD;③BE=BD.其中正確結(jié)論的個(gè)數(shù)為( )

A.3
B.2
C.1
D.0

【答案】A
【解析】∵△ABC是等邊三角形,
∴AB=AC,
又∵AD是∠BAC的平分線,
∴AD⊥BC,BD=DC,
∵△ABC和△ADE是等邊三角形,
∴AE=AD,AB=AC,∠EAD=∠BAC=60°,
∴∠EAD-∠BAD=∠BAC-∠BAD,
∴∠BAE=∠DAC,
在△BAE和△CAD中,
∴△BAE≌△CAD(SAS),
∴∠DAC=∠BAE,BE=DC,
又∵BD=DC,
∴BE=BD,
∵△ABC是等邊三角形,
∴∠BAC=60°,
∵AD是∠BAC的平分線,
∴∠DAC=30°,
∴∠BAE=30°,
∵△ADE是等邊三角形,
∴∠DAE=60°,
∴∠BAD=30°=∠BAE,
∵AE=AD,
∴EF=DF(三線合一),
即①②③都符合題意。
故應(yīng)選:A 。
【考點(diǎn)精析】關(guān)于本題考查的等腰三角形的性質(zhì)和等邊三角形的性質(zhì),需要了解等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱:等邊對(duì)等角);等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列運(yùn)算正確的是(  )

A. 2a﹣a=1 B. 2a+b=2ab C. (a43=a7 D. (﹣a)2(﹣a)3=﹣a5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中,正確的是( 。

A.因?yàn)橄喾磾?shù)是成對(duì)出現(xiàn)的,所以0沒(méi)有相反數(shù)B.數(shù)軸上原點(diǎn)兩旁的兩點(diǎn)表示的數(shù)是互為相反數(shù)

C.符號(hào)不同的兩個(gè)數(shù)是互為相反數(shù)D.正數(shù)的相反數(shù)是負(fù)數(shù),負(fù)數(shù)的相反數(shù)是正數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABCD中,DE是∠ADC的角平分線,交BC于點(diǎn)E

(1)求證:CD=CE;
(2)若BE=CE , 求證:AEDE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一樓房AB后有一假山,其坡度為i=1: ,山坡坡面上E點(diǎn)處有一休息亭,測(cè)得假山坡腳C與樓房水平距離BC=25米,與亭子距離CE=20米,小麗從樓房頂測(cè)得E點(diǎn)的俯角為45°,求樓房AB的高.(注:坡度i是指坡面的鉛直高度與水平寬度的比)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A,C,B三點(diǎn)在同一條直線上,△DAC和△EBC都是等邊三角形,AE,BD分別與CD,CE交于點(diǎn)M,N,有如下結(jié)論:①△ACE≌△DCB;②CM=CN;③AC=DN,其中正確結(jié)論的個(gè)數(shù)是( )

A.3
B.2
C.1
D.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】NBA季后賽正如火如荼地進(jìn)行著,詹姆斯率領(lǐng)的騎士隊(duì)在第三場(chǎng)季后賽中先落后25分的情況

下實(shí)現(xiàn)了大逆轉(zhuǎn).該場(chǎng)比賽中詹姆斯的技術(shù)統(tǒng)計(jì)數(shù)據(jù)如下表所示:

技術(shù)

上場(chǎng)時(shí)間

(分鐘)

出手投籃(次)

投中

(次)

罰球

得分

籃板

(個(gè))

助攻

(次)

個(gè)人

總得分

數(shù)據(jù)

45

27

14

7

13

12

41

【注:表中出手投籃次數(shù)和投中次數(shù)均不包括罰球,個(gè)人總得分來(lái)自2分球和3分球的得分以及罰

球得分.】根據(jù)以上信息,求出本場(chǎng)比賽中詹姆斯投中2分球和3分球的個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各組數(shù)可能是一個(gè)三角形的邊長(zhǎng)的是

A. 1,2,4 B. 4,59 C. 4,6,8 D. 5,5,11

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以扇形OAB的頂點(diǎn)O為原點(diǎn),半徑OB所在的直線為軸,建立平面直角坐標(biāo)系,點(diǎn)B的坐標(biāo)為(2,0),若拋物線與扇形OAB的邊界總有兩個(gè)公共點(diǎn),則實(shí)數(shù)的取值范圍是________________

查看答案和解析>>

同步練習(xí)冊(cè)答案