【題目】如圖,已知ADBECF,它們以此交直線l1、l2于點A、B、CD、E、F.若,AC=14,

(1)求AB的長.

(2)如果AD=7,CF=14,求BE的長.

【答案】(1)AB=4;(2)BE=9.

【解析】【詳解】(1)根據(jù)三條平行線截兩條直線,所得的對應(yīng)線段成比例可得從而可得,再由AC=14即可求出AB的長;

(2)過點AAGDFBE于點H,交CF于點G,運用比例關(guān)系求出BHHE的長,然后即可得出BE的長.

【詳解】(1)ADBECF,

,

AC=14,

AB=4,

(2)過點AAGDFBE于點H,交CF于點G,如圖所示:

又∵ADBECF,AD=7,

AD=HE=GF=7,

CF=14,

CG=14﹣7=7,

BECF,

,

BH=2,

BE=2+7=9.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算,適當(dāng)寫出運算過程

(1) ;

(2)

(3)

(4)

(5)

(6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值

1)已知A=2x2-4xy-2x-3,B=-x2+xy+2,當(dāng)x,y滿足|x+1|+(y-2)2=0時,求A-B的值;

2)某同學(xué)做數(shù)學(xué)題兩個多項式AB,B4x2-5x-6,求A+B時,誤將A+B看成了A -B,求得的答案是-7x2+10x+12.

①請你寫出A+B的正確答案;

②求當(dāng)x=-3時,A+B的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分)如圖,AB⊙O的直徑,直線CD⊙O于點D,AM⊥CD于點M,BN⊥CDN

1)求證:∠ADC=∠ABD;

2)求證:AD2=AMAB;

3)若AM=,sinABD=,求線段BN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠以80/箱的價格購進60箱原材料,準(zhǔn)備由甲、乙兩車間全部用于生產(chǎn)A產(chǎn)品.甲車間用每箱原材料可生產(chǎn)出A產(chǎn)品12千克,需耗水4噸;乙車間通過節(jié)能改造,用每箱原材料可生產(chǎn)出的A產(chǎn)品比甲車間少2千克,但耗水量是甲車間的一半.已知A產(chǎn)品售價為30/千克,水價為5/噸.設(shè)甲車間用x箱原材料生產(chǎn)A產(chǎn)品.

1)用含x的代數(shù)式表示:乙車間用________箱原材料生產(chǎn)A產(chǎn)品;

2)求兩車間生產(chǎn)這批A產(chǎn)品的總耗水量;

3)若兩車間生產(chǎn)這批產(chǎn)品的總耗水為200噸,則該廠如何分配兩車間的生產(chǎn)原材料?

4)用含x的代數(shù)式表示這次生產(chǎn)所能獲取的利潤并化簡.(注:利潤=產(chǎn)品總售價-購買原材料成本-水費)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司開發(fā)出一款新的節(jié)能產(chǎn)品,該產(chǎn)品的成本價為8/件,該產(chǎn)品在正式投放市場前通過代銷點進行了為期一個月30天的試銷售,售價為13/件,工作人員對銷售情況進行了跟蹤記錄,并將記錄情況繪制成如圖所示的圖象,圖中的折線表示日銷量(件)與銷售時間(天)之間的函數(shù)關(guān)系.

1)直接寫出之間的函數(shù)解析式,并寫出的取值范圍.

2)若該節(jié)能產(chǎn)品的日銷售利潤為(元),求之間的函數(shù)解析式.日銷售利潤不超過1950元的共有多少天?

3)若,求第幾天的日銷售利潤最大,最大的日銷售利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售A、B兩種品牌的洗衣機,進價及售價如下表:

(1)該商場9月份用45000元購進A、B兩種品牌的洗衣機,全部售完后獲利9600元,求商場9月份購進AB兩種洗衣機的數(shù)量;

(2)該商場10月份又購進AB兩種品牌的洗衣機共用去36000元,

①問該商場共有幾種進貨方案?請你把所有方案列出來.

②通過計算說明洗衣機全部銷售完后哪種進貨方案所獲得的利潤最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)設(shè)計了一款工藝品,每件的成本是50元,為了合理定價,投放市場進行試銷.據(jù)市場調(diào)查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本

1求出每天的銷售利潤y(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;

2求出銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少

3如果該企業(yè)要使每天的銷售利潤不低于4000元,且每天的總成本不超過7000元,那么銷售單價應(yīng)控制在什么范圍內(nèi)?(每天的總成本=每件的成本×每天的銷售量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)九年級1班同學(xué)積極響應(yīng)“陽光體育工程”的號召,利用課外活動時間積極參加體育鍛煉,每位同學(xué)從長跑、籃球、鉛球、立定跳遠中選一項進行訓(xùn)練,訓(xùn)練前后都進行了測試. 現(xiàn)將項目選擇情況及訓(xùn)練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖表.

項目選擇統(tǒng)計圖

訓(xùn)練后籃球定時定點投籃測試進球統(tǒng)計表

進球數(shù)(個)

8

7

6

5

4

3

人數(shù)

2

1

4

7

8

2

請你根據(jù)圖表中的信息回答下列問題:

1)選擇長跑訓(xùn)練的人數(shù)占全班人數(shù)的百分比是___________,該班共有同學(xué)___________人;

2)求訓(xùn)練后籃球定時定點投籃人均進球數(shù);

3)根據(jù)測試資料,訓(xùn)練后籃球定時定點投籃的人均進球數(shù)比訓(xùn)練之前人均進球數(shù)增加25%. 請求出參加訓(xùn)練之前的人均進球數(shù).

查看答案和解析>>

同步練習(xí)冊答案