如圖,在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2a,CD=a,BC=2,四邊形BEFG是矩形,點E、F分別在腰BC、AD上,點G在AB上.設(shè)FG=x,矩形BEFG的面積為y.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)當矩形BEFG的面積等于梯形ABCD的面積的一半時,求x的值;
(3)當∠DAB=30°時,矩形BEFG是否能成為正方形?若能,求其邊長;若不能,請說明理由.

解:(1)過點D作DH⊥AB于H,
∵在矩形BEFG中,F(xiàn)G⊥AB,所以FG∥DH,
∴△AGF∽△AHD,
,
,得,

因此,
∵y=FG•BG=x×=-ax2+2ax,
即所求的函數(shù)關(guān)系式為y=-ax2+2ax (0<x<2).

(2)依題意,得-ax2+2ax=×(a+2a)×2,
因為a≠0,解以上方程得,x1=1,x2=3.
因為0<x≤2,所以x=3舍去,取x=1.
故當矩形BEFG的面積等于梯形ABCD的面積的一半時,x的值為1.

(3)矩形BEFG不能成為正方形.
在Rt△AHD中,∵∠DAH=30°,∴,即
EF≥CD=a=2,即EF>2.
又∵0<x≤2,即0<FG≤2,∴EF>FG,
因此矩形BEFG不能成為正方形.
分析:(1)過點D作DH⊥AB于H.由于△AGF∽△AHD,得到AG的值,有BG=AB-AG,再利用y=S矩形=FG•BG而得到y(tǒng)關(guān)于x的函數(shù)關(guān)系式.
(2)求得梯形的面積,由矩形BEFG的面積等于梯形ABCD的面積的一半建立方程,求得x的值.
(3)由正切的概念可得到CD=2,從而得到EF>2>FG,故矩形BEFG不能成為正方形.
點評:本題利用了梯形和矩形的性質(zhì),相似三角形的判定和性質(zhì),正切的概念求解,還應(yīng)用了一元二次方程的解法.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在直角梯形ABCD中,AD∥BC,CD⊥BC,E為BC邊上的點.將直角梯形ABCD沿對角線BD折疊,使△ABD與△EBD重合(如圖中陰影所示).若∠A=130°,AB=4cm,則梯形ABCD的高CD≈
3.1
cm.(結(jié)果精確到0.1cm)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F(xiàn)點以2cm/秒的速度在線段AB上由A向B勻速運動,E點同時以1cm/秒的速度在線段BC上由B向C勻速運動,設(shè)運動時間為t秒(0<t<5).
(1)求證:△ACD∽△BAC;
(2)求DC的長;
(3)設(shè)四邊形AFEC的面積為y,求y關(guān)于t的函數(shù)關(guān)系式,并求出y的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1998•大連)如圖,在直角梯形ABCD中.AD∥BC,DC⊥BC,且BC=3AD.以梯形的高AE為直徑的⊙O交AB于點F,交CD于點G、H.過點F引⊙O的切線交BC于點N.
(1)求證:BN=EN;
(2)求證:4DH•HC=AB•BF;
(3)設(shè)∠GEC=α.若tan∠ABC=2,求作以tanα、cotα為根的一元二次方程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,DC∥AB,∠ADC=90°,AB=3a,CD=2a,AD=2,點E、F分別是腰AD、BC上的動點,點G在AB上,且四邊形AEFG是矩形.設(shè)FG=x,矩形AEFG的面積為y.
(1)求y與x之間的函數(shù)關(guān)式,并寫出自變量x的取值范圍;
(2)在腰BC上求一點F,使梯形ABCD的面積是矩形AEFG的面積的2倍,并求出此時BF的長;
(3)當∠ABC=60°時,矩形AEFG能否為正方形?若能,求出其邊長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,AB∥CD,∠C=90°,AB=6cm,CD=10cm,AD=5cm,動點P、Q分別從點A、C同時出發(fā),點P以2cm/s的速度向點B移動,點Q以1cm/s的速度向點D移動,當一個動點到達終點時另一個動點也隨之停止運動.
(1)經(jīng)過幾秒鐘,點P、Q之間的距離為5cm?
(2)連接PD,是否存在某一時刻,使得PD恰好平分∠APQ?若存在,求出此時的移動時間;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案