【題目】某農(nóng)科所對甲、乙兩種小麥各選用10塊面積相同的試驗(yàn)田進(jìn)行種植試驗(yàn),它們的平均畝產(chǎn)量分別是 =610千克, =608千克,畝產(chǎn)量的方差分別是S2=29.6,S2=2.7.則關(guān)于兩種小麥推廣種植的合理決策是(
A.甲的平均畝產(chǎn)量較高,應(yīng)推廣甲
B.甲、乙的平均畝產(chǎn)量相差不多,均可推廣
C.甲的平均畝產(chǎn)量較高,且畝產(chǎn)量比較穩(wěn)定,應(yīng)推廣甲
D.甲、乙的平均畝產(chǎn)量相差不多,但乙的畝產(chǎn)量比較穩(wěn)定,應(yīng)推廣乙

【答案】D
【解析】解:∵ =610千克, =608千克, ∴甲、乙的平均畝產(chǎn)量相差不多
∵畝產(chǎn)量的方差分別是S2=29.6,S2=2.7.
∴乙的畝產(chǎn)量比較穩(wěn)定.
故選D.
【考點(diǎn)精析】掌握算術(shù)平均數(shù)是解答本題的根本,需要知道總數(shù)量÷總份數(shù)=平均數(shù).解題關(guān)鍵是根據(jù)已知條件確定總數(shù)量以及與它相對應(yīng)的總份數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0),B(5,0)兩點(diǎn),直線y=﹣ x+3與y軸交于點(diǎn)C,與x軸交于點(diǎn)D.點(diǎn)P是x軸上方的拋物線上一動(dòng)點(diǎn),過點(diǎn)P作PF⊥x軸于點(diǎn)F,交直線CD于點(diǎn)E.設(shè)點(diǎn)P的橫坐標(biāo)為m.

(1)求拋物線的解析式;
(2)若PE=5EF,求m的值;
(3)若點(diǎn)E′是點(diǎn)E關(guān)于直線PC的對稱點(diǎn),是否存在點(diǎn)P,使點(diǎn)E′落在y軸上?若存在,請直接寫出相應(yīng)的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠CAB=50°.按以下步驟作圖:①以點(diǎn)A為圓心,小于AC的長為半徑畫弧,分別交AB、AC于點(diǎn)E、F;②分別以點(diǎn)E、F為圓心,大于 EF的長為半徑畫弧,兩弧相交于點(diǎn)G;③作射線AG交BC邊于點(diǎn)D.則∠ADC的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,鈍角△ABC.

(1)過AAEBC,過BBFAC,垂足分別為E,F(xiàn),AE,BF相交于H;

(2)過AAM∥BC,過BBM∥AC,相交于M;

(3)若∠AMB=115°,求∠AHB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】折疊三角形紙片ABC,使點(diǎn)A落在BC邊上的點(diǎn)F,且折痕DEBC,若∠A=75°,C=60°,則∠BDF=____________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,射線OA表示的方向是北偏東15°,射線OB表示的方向是北偏西40°.

(1)若∠AOC=∠AOB,則射線OC表示的方向是

(2)若射線OD是射線OB的反向延長線,則射線OD表示的方向是 ;

(3)∠BOD可以看作是由OB繞點(diǎn)O逆時(shí)針方向旋轉(zhuǎn)至OD形成的角,作∠BOD的平分線OE;

(4)在(1),(2),(3)的條件下,求∠COE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,∠C=60°,BC=2AD=2 ,點(diǎn)E是BC邊的中點(diǎn),△DEF是等邊三角形,DF交AB于點(diǎn)G,則△BFG的周長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式:

第一個(gè)等式:a1==-

第二個(gè)等式:a2==-

第三個(gè)等式:a3==-

第四個(gè)等式:a4==-

按上述規(guī)律,回答下列問題:

(1)請寫出第六個(gè)等式:a6=_____=_____;

(2)用含n的代數(shù)式表示第n個(gè)等式:an=_____=_____

(3)a1+a2+a3+a4+a5+a6=_____(得出最簡結(jié)果);

(4)計(jì)算:a1+a2++an

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面內(nèi),分別用3根、5根、6根……火柴棒首尾依次相接,能搭成什么形狀的三角形呢?通過嘗試,列表如下.

火柴棒數(shù)

3

5

6

示意圖

形狀

等邊三角形

等腰三角形

等邊三角形

:(1)4根火柴棒能搭成三角形嗎?

(2)8根、12根火柴棒分別能搭成幾種不同形狀的三角形?并畫出它們的示意圖.

查看答案和解析>>

同步練習(xí)冊答案