已知x、y滿足數(shù)學(xué)公式,求代數(shù)式:數(shù)學(xué)公式的值.

解:由,
由于|2x-4|≥0,3x-2y+4≥0,
所以
解得x=2,y=5
原式=,
將x=2,y=5時代入原式=
分析:首先根據(jù)已知條件求出x、y的值,然后對分式進(jìn)行化簡,最后代值計(jì)算.
點(diǎn)評:本題的關(guān)鍵是化簡,然后把給定的值代入求值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列范例,按要求解答問題.
例:已知實(shí)數(shù)a,b,c滿足:a+b+2c=1,a2+b2+6c+
3
2
=0
,求a,b,c的值.
解:∵a+b+2c=1,∴a+b=1-2c,
設(shè)a=
1-2c
2
+t,b=
1-2c
2
-t

a2+b2+6c+
3
2
=0

將①代入②得:(
1-2c
2
+t)2+(
1-2c
2
-t)2+6c+
3
2
=0

整理得:t2+(c2+2c+1)=0,即t2+(c+1)2=0,∴t=0,c=-1
將t,c的值同時代入①得:a=
3
2
,b=
3
2
.∴a=b=
3
2
,c=-1

以上解法是采用“均值換元”解決問題.一般地,若實(shí)數(shù)x,y滿足x+y=m,則可設(shè)x=
m
2
+t,y=
m
2
-t
,合理運(yùn)用這種換元技巧,可順利解決一些問題.現(xiàn)請你根據(jù)上述方法試解決下面問題:
已知實(shí)數(shù)a,b,c滿足:a+b+c=6,a2+b2+c2=12,求a,b,c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列范例,按要求解答問題.
例:已知實(shí)數(shù)a、b、c滿足a+b+2c=1,a2+b2+6c+
3
2
=0,求a、b、c的值.
解法1:由已知得a+b=1-2c,①(a+b)2-2ab+6c+
3
2
=0.②
將①代入②,整理得4c2+2c-2ab+
5
2
=0.∴ab=2c2+c+
5
4

由①、③可知,a、b是關(guān)于t的方程t2-(1-2c)t+2c2+c+
5
4
=0④的兩個實(shí)數(shù)根.
∴△=(1-2c)2-4(2c2+c+
5
4
≥0,即(c+1)2≤0.而(c+1)2≥0,∴c+l=0,c=-1,
將c=-1代入④,得t2-3t+
9
4
=0.∴t1=t2=
3
2
,即a=b=
3
2
.∴a=b,c=-1.
解法2∵a+b+2c=1,∴a+b=1-2c、設(shè)a=
1-2c
2
+t,b=
1-2c
2
-t.①
∵a2+b2+6c+
3
2
=0,∴(a+b)2-2ab+6c+
3
2
=0.②
將①代入②,得(1-2c)2-2(
1-2c
2
+t)(
1-2c
2
-t)
+6c+
3
2
=0.
整理,得t2+(c2+2c+1)=0,即t2+(c+1)2=0.∴t=0,c=-1.
將t、c的值同時代入①,得a=
3
2
,b=
3
2
.a(chǎn)=b=
3
2
,c=-1.
以上解法1是構(gòu)造一元二次方程解決問題.若兩實(shí)數(shù)x、y滿足x+y=m,xy=n,則x、y是關(guān)于t的一元二次方程t2-mt+n=0的兩個實(shí)數(shù)根,然后利用判別式求解.
以上解法2是采用均值換元解決問題.若實(shí)數(shù)x、y滿足x+y=m,則可設(shè)x=
m
2
+t,y=
m
2
-t.一些問題根據(jù)條件,若合理運(yùn)用這種換元技巧,則能使問題順利解決.
下面給出兩個問題,解答其中任意一題:
(1)用另一種方法解答范例中的問題.
(2)選用范例中的一種方法解答下列問題:
已知實(shí)數(shù)a、b、c滿足a+b+c=6,a2+b2+c2=12,求證:a=b=c.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

根據(jù)一元二次方程根的定義,解答下列問題.
一個三角形兩邊長分別為3cm和7cm,第三邊長為a cm,且整數(shù)a滿足a2-10a+21=0,求三角形的周長.
解:由已知可得4<a<10,則a可取5,6,7,8,9.(第一步)
當(dāng)a=5時,代入a2-10a+21=52-10×5+21≠0,故a=5不是方程的根.
同理可知a=6,a=8,a=9都不是方程的根.
∴a=7是方程的根.(第二步)
∴△ABC的周長是3+7+7=17(cm).
上述過程中,第一步是根據(jù)
三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊
三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊
,第二步應(yīng)用了
分類討論
分類討論
數(shù)學(xué)思想,確定a的值的大小是根據(jù)
方程根的定義
方程根的定義

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:,用“+”或“-”或“×”或“÷”連結(jié)M、N,有多種不同的形式,如M+N、M-N,請你任取其中一種進(jìn)行計(jì)算,并化簡求值,其中x滿足然后選擇一個你喜歡的數(shù)字代入求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年人教新課標(biāo)版中考綜合模擬數(shù)學(xué)卷(13) 題型:計(jì)算題

已知:,用“+”或“-”或“×”或“÷”連結(jié)M、N,有多種不同的形式,如M+N、M-N,請你任取其中一種進(jìn)行計(jì)算,并化簡求值,其中x滿足然后選擇一個你喜歡的數(shù)字代入求值.

查看答案和解析>>

同步練習(xí)冊答案