如圖,已知在△ABC中,AD平分∠BAC,AE是△ABC中BC邊上的高,∠B=20°,∠C=50°,則∠DAE=
15°
15°
分析:由三角形內(nèi)角和定理可求得∠BAC的度數(shù),在Rt△ADC中,可求得∠DAC的度數(shù),AE是角平分線,有∠EAC=
1
2
∠BAC,故∠EAD=∠EAC-∠DAC.
解答:解:在△ABC中,
∵AE是∠BAC的平分線,且∠B=20°,∠C=50°,
∴∠BAD=∠DAC=
1
2
(180°-∠B-∠C)=
1
2
(180°-20°-50°)=55°.
在△ACE中,∠AEC=90°,∠C=50°,
∴∠EAC=90°-50°=40°,
∠EAD=∠DAC-∠EAC=55°-40°=15°.
故答案是:15°.
點評:本題考查了三角形內(nèi)角和定理、三角形的角平分線、中線和高.求角的度數(shù)時,經(jīng)常用到隱含在題中的“三角形內(nèi)角和是180°”這一條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,已知在△ABC中,AD、AE分別是BC邊上的高和中線,AB=9cm,AC=7cm,BC=8m,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在△ABC中,BD為∠ABC的平分線,AB=BC,點P在BD上,PM⊥AD于M,PN⊥CD于N,求證:PM=PN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在△ABC中,AB=AC,∠A=100°,CD是∠ACB的平分線.
(1)∠ADC=
60°
60°

(2)求證:BC=CD+AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在△ABC中,∠B與∠C的平分線交于點P.當(dāng)∠A=70°時,則∠BPC的度數(shù)為
125°
125°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在△ABC中,CD=CE,∠A=∠ECB,試說明CD2=AD•BE.

查看答案和解析>>

同步練習(xí)冊答案