【題目】在△ABC中,∠ACB=90°,AC=4,AB=5,點(diǎn)E、F分別在AC、AB上,連接EF,將△ABC沿EF折疊,使點(diǎn)A落在BC邊上的點(diǎn)D處.若△DEF有一邊垂直BC,則EF=_____.
【答案】或
【解析】
分兩種情況:①當(dāng)DF⊥BC時(shí),則DF∥AC,結(jié)合折疊的性質(zhì)證出DE=DF=AF=AE,設(shè)DE=DF=AF=AE=x,由平行線得出△BDF∽△BCA,解得,在Rt△CDE中,由勾股定理得出方程,得出,,作FG⊥AE于G,由勾股定理求出AG,再由勾股定理即可得出結(jié)果;
②當(dāng)DE⊥BC時(shí),此時(shí)D與C重合,E為AC的中點(diǎn),F為AB的中點(diǎn),由三角形中位線定理得出答案.
分兩種情況:
①當(dāng)DF⊥BC時(shí),如圖1所示:
則DF∥AC,
∴∠DFE=∠AEF,
∵∠ACB=90°,AC=4,AB=5,
∴,
由折疊的性質(zhì)得:,
∴,
∴,
∴,
設(shè),
∵DF∥AC,
∴,
∴,
∴,
解得:,
在中,,
∴,
即:,
解得:或(舍去),
∴,,
∴,
作FG⊥AE于G,
則,
∴,
∴,
∴;
②當(dāng)DE⊥BC時(shí),如圖2所示:
此時(shí)D與C重合,E為AC的中點(diǎn),F為AB的中點(diǎn),
∴EF為△ABC的中位線,
∴;
綜上所述,若△DEF有一邊垂直BC,則EF為或;
故答案為:或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y1=﹣x2+x+2與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,直線l是拋物線的對(duì)稱軸,一次函數(shù)y2=kx+b經(jīng)過(guò)B、C兩點(diǎn),連接AC.
(1)△ABC是 三角形;
(2)設(shè)點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),當(dāng)△PAC的周長(zhǎng)最小時(shí),求點(diǎn)P的坐標(biāo);
(3)結(jié)合圖象,寫出滿足y1>y2時(shí),x的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=4.4cm,點(diǎn)D是AC邊的中點(diǎn),點(diǎn)P是邊AB上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作射線BC的垂線,垂足為點(diǎn)E,連接DE.設(shè)PA=xcm,ED=ycm,小石根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.下面是小石的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)通過(guò)取點(diǎn)、畫圖、測(cè)量,得到了x與y的幾組值,如表:(說(shuō)明:補(bǔ)全表格時(shí)相關(guān)數(shù)據(jù)保留一位小數(shù))
(2)建立平面直角坐標(biāo)系,描出已補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問(wèn)題:點(diǎn)E是BC邊的中點(diǎn)時(shí),PA的長(zhǎng)度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,等腰直角△OAB的斜邊OB在x軸上,且OB=4,反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)OA的中點(diǎn)C,交AB于點(diǎn)D,則點(diǎn)D坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=的圖象如圖所示,若直線y=x+m與該圖象恰有三個(gè)不同的交點(diǎn),則m的取值范圍為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司向市場(chǎng)投放一款研發(fā)成本為10千萬(wàn)元新產(chǎn)品,經(jīng)調(diào)研發(fā)現(xiàn),其銷售總利潤(rùn)y(千萬(wàn)元)與銷售時(shí)間x(月)成二次函數(shù),其函數(shù)關(guān)系式為y=﹣x2+20x(x為整數(shù)).求:
(1)投入市場(chǎng)幾個(gè)月后累計(jì)銷售利潤(rùn)y開始下降;
(2)累計(jì)利潤(rùn)達(dá)到8.1億時(shí),最快要幾個(gè)月(利潤(rùn)=銷售總利潤(rùn)﹣研發(fā)成本);
(3)當(dāng)月銷售利潤(rùn)小于等于3千萬(wàn)時(shí)應(yīng)考慮推出替代產(chǎn)品,問(wèn)該公司何時(shí)推出替代產(chǎn)品最好?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)O的拋物線y=ax2﹣7ax與x軸正半軸交于點(diǎn)A,點(diǎn)D為第三象限拋物線上一點(diǎn),AD交y軸于點(diǎn)B,OA=2OB,點(diǎn)D縱坐標(biāo)為﹣4.
(1)如圖1,求拋物線的解析式;
(2)如圖2,點(diǎn)P為第一象限拋物線上一點(diǎn),過(guò)點(diǎn)P作PE⊥x軸,垂足為E,PD交y軸于點(diǎn)C,連接CE,求證:CE∥AD;
(3)如圖3,在(2)的條件下,將線段EC繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°,使點(diǎn)C恰好落在拋物線的點(diǎn)F處,連接OP,點(diǎn)Q為線段OP上一點(diǎn),若∠FQC=135°,求點(diǎn)Q坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線 (a≠0)的對(duì)稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:
①4ac<b2;
②方程 的兩個(gè)根是x1=﹣1,x2=3;
③3a+c>0
④當(dāng)y>0時(shí),x的取值范圍是﹣1≤x<3
⑤當(dāng)x<0時(shí),y隨x增大而增大
其中結(jié)論正確的個(gè)數(shù)是( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某校九年級(jí)男生1000米跑的水平,從中隨機(jī)抽取部分男生進(jìn)行測(cè)試,并把測(cè)試成績(jī)分為、、、四個(gè)等次繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請(qǐng)你依圖解答下列問(wèn)題:
(1)_______,_______,_________;
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整,并計(jì)算表示等次的扇形所對(duì)的圓心角的度數(shù)為_______;
(3)學(xué)校決定從等次的甲、乙、丙、丁四名男生中,隨機(jī)選取兩名男生參加全市中學(xué)生1000米跑比賽,請(qǐng)用列表法或畫樹狀圖法,求甲、乙兩名男生同時(shí)波選中的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com