為測(cè)量池塘邊兩點(diǎn)A,B之間的距離,小明設(shè)計(jì)了如下的方案:在地面取一點(diǎn)O,使AC、BD交于點(diǎn)O,且CD∥AB.若測(cè)得OB:OD=3:2,CD=40米,則A,B兩點(diǎn)之間的距離為
60
60
米.
分析:將原題轉(zhuǎn)化為相似三角形,根據(jù)相似三角形的性質(zhì)解答,即可得出DE的寬.
解答:解:∵AB∥CD,
∴△ABO∽△CD0,
BO
DO
AB
CD
3
2
,
∵CD=40米,
∴AB=60米.
故答案為:60.
點(diǎn)評(píng):此題主要考查了相似三角形的應(yīng)用,把實(shí)際問(wèn)題抽象到相似三角形中,利用相似三角形的相似比,列出方程,通過(guò)解方程求出池塘的寬度,體現(xiàn)了方程的思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

探究問(wèn)題
(1)方法感悟:
一班同學(xué)到野外上數(shù)學(xué)活動(dòng)課,為測(cè)量池塘兩端A、B的距離,設(shè)計(jì)了如下方案:
方案(Ⅰ)如圖1,先在平地上取一個(gè)可直接到達(dá)A、B的點(diǎn)C,連接AC、BC,并分別延長(zhǎng)AC至D,BC至E,使DC=AC,EC=BC,最后測(cè)出DE的距離即為AB的長(zhǎng);感悟解題方法,并完成下列填空:
解:在如圖所示的兩個(gè)三角形△DEC和△ABC中:DC=AC,∠
ACB
ACB
=∠
DCE
DCE
(對(duì)頂角相等),EC=BC,∴△DEC≌△ABC
(SAS)
(SAS)
,∴DE=AB(全等三角形對(duì)應(yīng)邊相等),即DE的距離即為AB的長(zhǎng).
(2)方法遷移:
方案(Ⅱ)如圖2,先過(guò)B點(diǎn)作AB的垂線BF,再在BF上取C、D兩點(diǎn)使BC=CD,接著過(guò)D作BD的垂線DE,交AC的延長(zhǎng)線于E,則測(cè)出DE的長(zhǎng)即為AB的距離.請(qǐng)你說(shuō)明理由.  
(3)問(wèn)題拓展:
方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是
作∠ABC=∠EDC=90°
作∠ABC=∠EDC=90°
;若僅滿足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立?
成立
成立

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

為測(cè)量池塘邊兩點(diǎn)A,B之間的距離,小明設(shè)計(jì)了如下的方案:在地面取一點(diǎn)O,使AC、BD交于點(diǎn)O,且CD∥AB.若測(cè)得OB:OD=3:2,CD=40米,則A,B兩點(diǎn)之間的距離為________米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

探究問(wèn)題
(1)方法感悟:
一班同學(xué)到野外上數(shù)學(xué)活動(dòng)課,為測(cè)量池塘兩端A、B的距離,設(shè)計(jì)了如下方案:
方案(Ⅰ)如圖1,先在平地上取一個(gè)可直接到達(dá)A、B的點(diǎn)C,連接AC、BC,并分別延長(zhǎng)AC至D,BC至E,使DC=AC,EC=BC,最后測(cè)出DE的距離即為AB的長(zhǎng);感悟解題方法,并完成下列填空:
解:在如圖所示的兩個(gè)三角形△DEC和△ABC中:DC=AC,∠______=∠______(對(duì)頂角相等),EC=BC,∴△DEC≌△ABC______,∴DE=AB(全等三角形對(duì)應(yīng)邊相等),即DE的距離即為AB的長(zhǎng).
(2)方法遷移:
方案(Ⅱ)如圖2,先過(guò)B點(diǎn)作AB的垂線BF,再在BF上取C、D兩點(diǎn)使BC=CD,接著過(guò)D作BD的垂線DE,交AC的延長(zhǎng)線于E,則測(cè)出DE的長(zhǎng)即為AB的距離.請(qǐng)你說(shuō)明理由. 
(3)問(wèn)題拓展:
方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是______;若僅滿足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立?______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

探究問(wèn)題
(1)方法感悟:
一班同學(xué)到野外上數(shù)學(xué)活動(dòng)課,為測(cè)量池塘兩端A、B的距離,設(shè)計(jì)了如下方案:
方案(Ⅰ)如圖1,先在平地上取一個(gè)可直接到達(dá)A、B的點(diǎn)C,連接AC、BC,并分別延長(zhǎng)AC至D,BC至E,使DC=AC,EC=BC,最后測(cè)出DE的距離即為AB的長(zhǎng);感悟解題方法,并完成下列填空:
在如圖所示的兩個(gè)三角形△DEC和△ABC中:DC=AC,∠______=∠______(對(duì)頂角相等),EC=BC,∴△DEC≌△ABC______,∴DE=AB(全等三角形對(duì)應(yīng)邊相等),即DE的距離即為AB的長(zhǎng).
(2)方法遷移:
方案(Ⅱ)如圖2,先過(guò)B點(diǎn)作AB的垂線BF,再在BF上取C、D兩點(diǎn)使BC=CD,接著過(guò)D作BD的垂線DE,交AC的延長(zhǎng)線于E,則測(cè)出DE的長(zhǎng)即為AB的距離.請(qǐng)你說(shuō)明理由.  
(3)問(wèn)題拓展:
方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是______;若僅滿足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立?______.

精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案