精英家教網(wǎng)如圖,在矩形ABCD中,AD=5,AB=4,點E、G、H、F分別在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,點P是直線EF、GH之間任意一點,連接PE、PF、PG、PH,則△PEF和△PGH的面積和等于
 
分析:連接EG、FH,易證得△AEF≌△CHG,△FHD≌△GEB,即可得FH=EG、EF=GH,由此可證得四邊形EFHG是平行四邊形,可過P作EF、GH的垂線,可發(fā)現(xiàn)所求的兩個三角形的面積和實際等于平行四邊形EFHG面積的一半,按此思路進行求解即可.
解答:精英家教網(wǎng)解:連接FH、EG;
∵AF=CG=2,AE=CH=4-1=3,∠A=∠C=90°,
∴△AEF≌△CHG,S△AEF=S△CHG=3;
同理可證:△FHD≌△GEB,S△FHD=S△GEB=1.5;
∴FH=EG,EF=GH,即四邊形EFHG是平行四邊形;
且S平行四邊形=S矩形-2S△AEF-2S△FHD=11;
過P作EF、GH的垂線,交EF于M,GH于N;
則S△EFP+S△GHP=
1
2
EF(PM+PN)=
1
2
EF•MN=
1
2
S?EFHG=
11
2

故答案為:
11
2
點評:此題考查了矩形的性質(zhì)、全等三角形的判定和性質(zhì)、平行四邊形的判定和性質(zhì)以及圖形面積的求法,能夠判斷出四邊形EFHG是平行四邊形是解答此題的關鍵所在.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=4cm,BC=8cm,點P從點A出發(fā)以1cm/s的速度向點B運動,點Q從點B出發(fā)以2cm/s的速度向點C運動,設經(jīng)過的時間為xs,△PBQ的面積為ycm2,則下列圖象能反映y與x之間的函數(shù)關系的是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,點O在對角線AC上,以OA的長為半徑的⊙O與AD、AC分別交于點E、F,且∠ACB=∠DCE精英家教網(wǎng)
(1)判斷直線CE與⊙O的位置關系,并說明理由;
(2)若AB=
2
,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖①,在矩形 ABCD中,AB=30cm,BC=60cm.點P從點A出發(fā),沿A→B→C→D路線向點D勻速運動,到達點D后停止;點Q從點D出發(fā),沿 D→C→B→A路線向點A勻速運動,到達點A后停止.若點P、Q同時出發(fā),在運動過程中,Q點停留了1s,圖②是P、Q兩點在折線AB-BC-CD上相距的路程S(cm)與時間t(s)之間的函數(shù)關系圖象.
(1)請解釋圖中點H的實際意義?
(2)求P、Q兩點的運動速度;
(3)將圖②補充完整;
(4)當時間t為何值時,△PCQ為等腰三角形?請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,對角線AC,BD相交于點O,∠AOB=60°,AB=6,則AD=( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,AB=4,BC=6,E為線段BC上的動點(不與B、C重合).連接DE,作EF⊥DE,EF與AB交于點F,設CE=x,BF=y.
(1)求y與x的函數(shù)關系式;
(2)x為何值時,y的值最大,最大值是多少?
(3)若設線段AB的長為m,上述其它條件不變,m為何值時,函數(shù)y的最大值等于3?

查看答案和解析>>

同步練習冊答案