?ABCD中,對角線AC、BD相交于點O,BD=10cm,AC=14cm.點E從點A出發(fā)沿AC向點C運動,點F從點C出發(fā)沿CA向點A運動,且兩點都以1cm每秒的相同速度同時出發(fā).設運動時間為t秒.
(1)當點E、F不與點O重合時,試證明四邊形DEBF為平行四邊形?
(2)在運動的過程中,∠EDF有可能為直角嗎?若有可能,請直接寫出t值;若沒有可能,請說明理由.
分析:(1)根據(jù)對角線互相平分的四邊形為平行四邊形證得四邊形DEBF為平行四邊形;
(2)由“直角三角形斜邊上的中線等于斜邊的一半”證得OE=OF=OD=
1
2
BD=5cm.然后由平行四邊形DEBF的對角線的性質來求AE=CF的值.
解答:解:(1)由題意得:AE=CF=tcm.
①如圖①,當點E、F分別在OA、OC上時.
∵在平行四邊形ABCD中,OB=OD,OA=OC,
∴OE=OA-AE,OF=OC-CF,
∴OE=OF.
如圖②,當點E、F分別在OC、OA上時.
∵OE=AE-OA,OF=CF-OC,
∴OE=OF.
∵OE=OF,OB=OD,
∴四邊形DEBF為平行四邊形.

(2)當t=2或t=12時,∠EDF為直角.
理由:由(1)知 OE=OF、OB=OD,要使∠EDF是直角,只需OE=OF=OD=
1
2
BD=5cm.
則∠1=∠2,∠3=∠4,
∵∠1+∠2+∠3+∠4=180°,
∴2∠2+2∠3=180°,
∴∠2+∠3=90°
即∠EDF=90°.
此時AE=CF=
1
2
(AC-EF)=
1
2
(14-10)=2cm或AE=CF=14-2=12cm
所以t=2或t=12.
點評:本題考查了平行四邊形的判定與性質.對角線互相平分的四邊形是平行四邊形.平行四邊形的對角線互相平分.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在?ABCD中,對角線AC、BD相交于點O,AB=
29
,AC=4,BD=10.
問:(1)AC與BD有什么位置關系?說明理由.
(2)四邊形ABCD是菱形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,對角線AC=8cm,△AOB是等邊三角形,則AD的長為
 
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知菱形ABCD中,對角線AC=8,BD=6,則菱形的高為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在梯形ABCD中,對角線AC,BD交于點O,且AC⊥BD,AC=5,BD=12,則梯形ABCD的中位線長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•成都)如圖.在菱形ABCD中,對角線AC,BD交于點O,下列說法錯誤的是( 。

查看答案和解析>>

同步練習冊答案