如圖,梯形ABCD是一個攔河壩的截面圖,壩高為6米.背水坡AD的坡度i為1:1.2,為了提高河壩的抗洪能力,防汛指揮部決定加固河壩,若壩頂CD加寬0.8米,新的背水坡EF的坡度為1:1.4.河壩總長度為4800米.
(1)求完成該工程需要多少方土?
(2)某工程隊在加固600米后,采用新的加固模式,這樣每天加固長度是原來的2倍,結果只用9天完成了大壩加固的任務.請你求出該工程隊原來每天加固的米數(shù).

【答案】分析:(1)首先過點D作DG⊥AB于G,過點E作EH⊥AB于H,由CD∥AB,即可得EH=DG=6米,然后由背水坡AD的坡度i為1:1.2,新的背水坡EF的坡度為1:1.4,即可求得AG與FH的長,則可求得FA的長,則可求得梯形ADEF的面積,繼而為求得該工程需要多少方土;
(2)首先設原來每天加固x米,根據題意即可得方程:,解此方程即可求得答案.
解答:解:(1)過點D作DG⊥AB于G,過點E作EH⊥AB于H.
∵CD∥AB,
∴EH=DG=6米,
,
∴AG=7.2米,

∴FH=8.4米,
∴FA=FH+GH-AG=8.4+0.8-7.2=2(米),
∴S梯形ADEF=(ED+AF)•EH=×(0.8+2)×6=8.4(平方米).
∴V=8.4×4800=40320(立方米).

(2)設原來每天加固x米,根據題意,
得:
去分母,得 1200+4200=18x(或18x=5400),
解得:x=300.
檢驗:當x=300時,2x≠0(或分母不等于0).
∴x=300是原方程的解.
答:該工程隊原來每天加固300米.
點評:此題考查了坡度坡角問題以及分式方程的應用.此題難度適中,注意能借助于題意構造直角三角形,并能利用解直角三角形的知識求解是解此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖等腰梯形ABCD是⊙O的外切四邊形,O是圓心,腰長4cm,則∠BOC=
 
度,梯形中位線長
 
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖等腰梯形ABCD是過街天橋的示意圖,已知天橋的斜面坡度為1:
3
,橋高DE=5米,那么斜面CD的長等于
 
米.
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•涼山州)如圖,梯形ABCD是直角梯形.
(1)直接寫出點A、B、C、D的坐標;
(2)畫出直角梯形ABCD關于y軸的對稱圖形,使它與梯形ABCD構成一個等腰梯形.
(3)將(2)中的等腰梯形向上平移四個單位長度,畫出平移后的圖形.(不要求寫作法)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•張家口一模)如圖,梯形ABCD是一個攔河壩的截面圖,壩高為6米.背水坡AD的坡度i為1:1.2,為了提高河壩的抗洪能力,防汛指揮部決定加固河壩,若壩頂CD加寬0.8米,新的背水坡EF的坡度為1:1.4.河壩總長度為4800米.
(1)求完成該工程需要多少方土?
(2)某工程隊在加固600米后,采用新的加固模式,這樣每天加固長度是原來的2倍,結果只用9天完成了大壩加固的任務.請你求出該工程隊原來每天加固的米數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,梯形ABCD是世紀廣場的示意圖,上底AD=90m,下底BC=150m,高100m,虛線MN是梯形ABCD的中位線.要設計修建寬度相同的一條橫向和兩條縱向大理石通道,橫向通道EGHF位于MN兩旁,且EF、GH與MN之間的距離相等,兩條縱向通道均與BC垂直,設通道寬度為xm.
(1)試用含x的代數(shù)式表示橫向通道EGHF的面積s1;
(2)若三條通道的面積和恰好是梯形ABCD面積的
14
時,求通道寬度為x;
(3)經測算大理石通道的修建費用y1(萬元)與通道寬度為xm的關系式為:y1=14x,廣場其余部分的綠化精英家教網費用為0.05萬元/m2,若設計要求通道寬度x≤8m,則寬度x為多少時,世紀廣場修建總費用最少?最少費用為多少?

查看答案和解析>>

同步練習冊答案