如圖是將矩形紙片ABCD沿對(duì)角線BD折疊得到的,圖中(包括實(shí)線、虛線在內(nèi))共有全等三角形

[  ]

A.2對(duì)
B.3對(duì)
C.4對(duì)
D.5對(duì)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)動(dòng)手操作:
如圖①,將矩形紙片ABCD折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)c'處,折痕為EF,若∠ABE=20°,那么∠EFC'的度數(shù)為
 

(2)觀察發(fā)現(xiàn):
小明將三角形紙片ABC(AB>AC)沿過(guò)點(diǎn)A的直線折疊,使得AC落在AB邊上,折痕為AD,展開(kāi)紙片(如圖②);再次折疊該三角形紙片,使點(diǎn)A和點(diǎn)D重合,折痕為EF,展平紙片后得到△AEF(如圖③).小明認(rèn)為△AEF是等腰三角形,你同意嗎?請(qǐng)說(shuō)明理由.
精英家教網(wǎng)
(3)實(shí)踐與運(yùn)用:
將矩形紙片ABCD 按如下步驟操作:將紙片對(duì)折得折痕EF,折痕與AD邊交于點(diǎn)E,與BC邊交于點(diǎn)F;將矩形ABFE與矩形EFCD分別沿折痕MN和PQ折疊,使點(diǎn)A、點(diǎn)D都與點(diǎn)F重合,展開(kāi)紙片,此時(shí)恰好有MP=MN=PQ(如圖④),求∠MNF的大。
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•臥龍區(qū)二模)如圖,將矩形紙片ABCD沿其對(duì)角線AC折疊,使點(diǎn)B落到點(diǎn)B′的位置,AB′與CD交于點(diǎn)E.
(1)試找出一個(gè)與△AED全等的三角形,并加以證明;
(2)若AB=8,DE=3,P為線段AC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PG⊥AB′于點(diǎn)G,作PH⊥DC于點(diǎn)H,試判斷PG+PH的值是否為定值?若為定值,請(qǐng)求出這個(gè)定值;若不是定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

有一張矩形紙片ABCD,按下面步驟進(jìn)行折疊:
第一步:如圖①,將矩形紙片ABCD折疊,使點(diǎn)B、D重合,點(diǎn)C落在點(diǎn)C′處,得折痕EF;
第二步:如圖②,將五邊形AEFC′D折疊,使AE、C′F重合,得折痕DG,再打開(kāi);
第三步:如圖③,進(jìn)一步折疊,使AE、C′F均落在DG上,點(diǎn)A、C′落在點(diǎn)A′處,點(diǎn)E、F落在點(diǎn)E′處,得折痕MN、QP.
這樣,就可以折出一個(gè)五邊形DMNPQ.
精英家教網(wǎng)
(1)請(qǐng)寫(xiě)出圖①中一組相等的線段
 
寫(xiě)出一組即可;
(2)若這樣折出的五邊形DMNPQ,如圖③,恰好是一個(gè)正五邊形,當(dāng)AB=a,AD=b,DM=m時(shí),有下列結(jié)論:
①a2-b2=2abtan18°;②m=
a2+b2
•tan18°
;
③b=m+atan18°;④b=
3
2
m+mtan18°

其中,正確結(jié)論的序號(hào)是
 
把你認(rèn)為正確結(jié)論的序號(hào)都填上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,將矩形紙片ABCD沿其對(duì)角線AC折疊,使點(diǎn)B落到點(diǎn)B′的位置,AB′與CD交于點(diǎn)E.
(1)求證:△AEC是等腰三角形;
(2)若P為線段AC上一動(dòng)點(diǎn),作PG⊥AB′于G、PH⊥DC于H,求證:PG+PH=AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,將矩形紙片ABCD沿EF折疊,點(diǎn)C與點(diǎn)A重合,點(diǎn)D落在點(diǎn)D′處,已知AB=4,BC=8,則線段AE的長(zhǎng)度是
5

查看答案和解析>>

同步練習(xí)冊(cè)答案