【題目】已知A,B兩地相距40千米,中午12:00時(shí),甲從A地出發(fā)開(kāi)車(chē)到B地,12:10時(shí)乙從B地出發(fā)騎自行車(chē)到A地,設(shè)甲行駛的時(shí)間為t(分),甲、乙兩人離A地的距離S(千米)與時(shí)間t(分)之間的關(guān)系如圖所示.由圖中的信息可知,乙到達(dá)A地的時(shí)間為( )

A.14:00 B.14:20 C.14:30 D.14:40

【答案】C.
【解析】【答】因?yàn)榧?0分走完全程40千米,所以甲的速度是 千米/分,

由圖中看出兩人在走了30千米時(shí)相遇,那么甲此時(shí)用了30÷ =45分,則乙用了(45-10)=35分,

所以乙的速度為:(40-30)÷35= 千米/分,所以乙走完全程需要時(shí)間為:40÷= 140分,此時(shí)的時(shí)間應(yīng)加上乙先前遲出發(fā)的10分,現(xiàn)在的時(shí)間為14:點(diǎn)30分;

所以答案是:C.

由圖像可知甲60分走完全程40千米,求出甲的速度,由圖中看出兩人在甲走到30千米時(shí)相遇,求出甲此時(shí)用的時(shí)間和乙用的時(shí)間,求出乙的速度,得到乙到達(dá)A地的時(shí)間.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算x(y﹣z)﹣y(z﹣x)+z(x﹣y),結(jié)果正確的是(
A.2xy﹣2yz
B.﹣2yz
C.xy﹣2yz
D.2xy﹣xz

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)家規(guī)定,中、小學(xué)生每天在校體育活動(dòng)時(shí)間不低于1h.為此,某區(qū)就“你每天在校體育活動(dòng)時(shí)間是多少”的問(wèn)題隨機(jī)調(diào)查了轄區(qū)內(nèi)300名初中學(xué)生.根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計(jì)圖如圖所示,其中A組為t0.5h,B組為0.5ht1h,C組為1ht1.5h,D組為t1.5h.

請(qǐng)根據(jù)上述信息解答下列問(wèn)題:

(1)本次調(diào)查數(shù)據(jù)的眾數(shù)落在 組內(nèi),中位數(shù)落在 組內(nèi);

(2)該轄區(qū)約有18000名初中學(xué)生,請(qǐng)你估計(jì)其中達(dá)到國(guó)家規(guī)定體育活動(dòng)時(shí)間的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)軸上,點(diǎn)A(表示整數(shù)a)在原點(diǎn)的左側(cè),點(diǎn)B(表示整數(shù)b)在原點(diǎn)的右側(cè).若|a-b|=2016,且AO=2BO,則a+b的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:(﹣2x3y2)(3x2y)=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直角三角形中30°角所對(duì)的直角邊為4cm,則斜邊的長(zhǎng)為__________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC,BE⊥AC于E,且D、E分別是AB、AC的中點(diǎn).延長(zhǎng)BC至點(diǎn)F,使CF=CE.

(1)求∠ABC的度數(shù);
(2)求證:BE=FE;
(3)若AB=2,求△CEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別落在x、y軸上,點(diǎn)B坐標(biāo)為(6,4),反比例函數(shù)的圖象與AB邊交于點(diǎn)D,與BC邊交于點(diǎn)E,連結(jié)DE,將BDE沿DE翻折至B'DE處,點(diǎn)B'恰好落在正比例函數(shù)y=kx圖象上,則k的值是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AD⊥BC且BD>CD,DF⊥AB,△CDE和△ADB都是等腰直角三角形,給出下列結(jié)論,正確的是

①△ADC≌△BDE;
②△ADF≌△BDF;
③△CDE≌△AFD;
④△ACE≌ABE.

查看答案和解析>>

同步練習(xí)冊(cè)答案