為解決藥價虛高給老百姓帶來的求醫(yī)難的問題,國家決定對某藥品分兩次降價.若設平均每次降價的百分率為x,該藥品的原價是m元,降價后的價格是y元,則y與x的函數(shù)關系式______.
原價為m,
第一次降價后的價格是m(1-x);
第二次降價是在第一次降價后的價格的基礎上降價的為:m(1-x)×(1-x)=m(1-x)2
則函數(shù)解析式是:y=m(1-x)2
故答案為:y=m(1-x)2
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,已知拋物線y=ax2+bx+c過點A(-1,0),且經(jīng)過直線y=x-3與坐標軸的兩個交點B、C.
(1)求拋物線的表達式;
(2)若點M在第四象限內且在拋物線上,有OM⊥BC,垂足為D,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx-4與x軸交于A(-4,0)、B(3,0)兩點,與y軸交于點C.

(1)求拋物線的函數(shù)關系式;
(2)點P是拋物上第三象限內的一動點,當點P運動到什么位置時,四邊形ABCP的面積最大?求出此時點P的坐標和四邊形ABCP的面積;
(3)點M在拋物線對稱軸上,點N是平面內一點,是否存在這樣的點M、N,使得以點M、N、B、C為頂點的四邊形是菱形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=-x2+x+c與x軸交于A,B兩點,與y軸交于點C,且點B的坐標為B(-2,0).
(1)求拋物線解析式;
(2)點P在拋物線上,且點P的橫坐標為x(-2<x<0),設△PBC的面積為S,求S與x之間的函數(shù)關系式,并求S的最大值;
(3)點M(m,n)是直線AC上的動點.設m=2-a,如果在兩個實數(shù)m與n之間(不包括m和n)有且只有一個整數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知關于x的一元二次方程
1
2
x2+(m-2)x+2m-6=0

(1)求證:無論m取任何實數(shù),方程都有兩個實數(shù)根;
(2)當m<3時,關于x的二次函數(shù)y=
1
2
x2+(m-2)x+2m-6
的圖象與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C,且2AB=3OC,求m的值;
(3)在(2)的條件下,過點C作直線lx軸,將二次函數(shù)圖象在y軸左側的部分沿直線l翻折,二次函數(shù)圖象的其余部分保持不變,得到一個新的圖象,記為G.請你結合圖象回答:當直線y=
1
3
x+b
與圖象G只有一個公共點時,b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,AO=8,AB=AC,sin∠ABC=
4
5
.CD與y軸交于點E,且S△COE=S△ADE.已知經(jīng)過B,C,E三點的圖象是一條拋物線,求這條拋物線對應的二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知過點(
3
2
,-
7
4
)的直線y=kx+b與x軸、y軸的交點分別為A、B,且經(jīng)過第一、三、四象限,它與拋物線y=x2-4x+3只有一個公共點.
(1)求k的值;
(2)設拋物線的頂點為P,求點P到直線AB的距離d.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點,與y軸交于C點,D是圖象上的一點,M為拋物線的頂點.已知A(-1,0),C(0,5),D(1,8).
(1)求拋物線的解析式.
(2)求△MCB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,己知二次函數(shù)y=-
1
2
x2+4x-6的圖象與x軸、y軸分別交于點A、B兩點.
(1)求A,B兩點的坐標;
(2)設該二次函數(shù)的對稱軸與x軸交于點C,連結BA、BC,求△ABC的面積.

查看答案和解析>>

同步練習冊答案