如圖,點(diǎn)A是BC上一點(diǎn),△ABD、△ACE都是等邊三角形.
試說明:
(1)AM=AN;
(2)MN∥BC;
(3)∠DOM=60°.

證明:(1)∵△ABD、△ACE都是等邊三角形,
∴AB=AD,AC=AE,∠BAD=∠CAE=60°,
∴180°-∠CAE=180°-∠BAD,
即∠BAE=∠DAC,
在△ABE和△ADC中,
,
∴△ABE≌△ADC(SAS),
∴∠ABE=∠ADC,
∵∠DAN=180°-∠BAD-∠CAE=180°-60°-60°=60°,
∴∠BAM=∠DAN,
在△ABM和△ADN中,
,
∴△ABM≌△ADN(ASA),
∴AM=AN;

(2)∵∠MAN=180°-60°×2=60°,AM=AN,
∴△AMN是等邊三角形,
∴∠AMN=60°,
∴∠AMN=∠BAD,
∴MN∥BC;

(3)在△ABM中,∠AMB=180°-∠BAM-∠BAD,
在△DMO中,∠DMO=180°-∠DAN-∠DOM,
∵∠BAM=∠DAN(已證),∠AMB=∠DMO(對(duì)頂角相等),
∴∠DOM=∠BAD=60°.
分析:(1)根據(jù)等邊三角形的性質(zhì)可得AB=AD,AC=AE,∠BAD=∠CAE=60°,再根據(jù)等角的補(bǔ)角相等求出∠BAE=∠DAC,然后利用“邊角邊”證明△ABE和△ADC全等,根據(jù)全等三角形對(duì)應(yīng)角相等可得∠ABE=∠ADC,再利用“角邊角”證明△ABM和△ADN全等,根據(jù)全等三角形對(duì)應(yīng)邊相等即可得證;
(2)證明△AMN是等邊三角形,然后求出∠AMN=60°,從而得到∠AMN=∠BAD,再根據(jù)內(nèi)錯(cuò)角相等,兩直線平行證明即可;
(3)利用三角形的內(nèi)角和定理表示出∠AMB和∠DMO,再根據(jù)對(duì)頂角相等可以求出∠DOM=∠BAD,從而得解.
點(diǎn)評(píng):本題考查了等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),平行線的判定,二次證明三角形全等得到△ABM和△ADN全等是證明本題的關(guān)鍵,也是難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•香坊區(qū)一模)已知:在△ABC中,AB=AC,點(diǎn)P是BC上一點(diǎn),PC=2PB,連接AP,作∠APD=∠B交AB于點(diǎn)D.連接CD,交AP于點(diǎn)E.
(1)如圖1,當(dāng)∠BAC=90°時(shí),則線段AD與BD的數(shù)量關(guān)系為
AD=
5
4
BD
AD=
5
4
BD
;
(2)如圖2,當(dāng)∠BAC=60°時(shí),求證:AD=
7
2
BD;
(3)在(2)的條件下,過點(diǎn)C作∠DCQ=60°交PA的延長(zhǎng)線于點(diǎn)Q如圖3,連接DQ,延長(zhǎng)CA交DQ于點(diǎn)K,若CQ=
67
2
.求線段AK的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)D是△ABC的邊BA的延長(zhǎng)線上一點(diǎn),有以下三項(xiàng):①∠B=∠C;②∠1=∠2;③AE∥BC,請(qǐng)把其中兩項(xiàng)作為條件,填入下面的“已知”欄中,另一項(xiàng)作為結(jié)論,填入下面的“求證”欄中,使之組成一個(gè)真命題,并寫出證明過程.
已知:
AE∥BC,∠1=∠2
AE∥BC,∠1=∠2

求證:
∠B=∠C
∠B=∠C

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)D是△ABC的BA邊的延長(zhǎng)線上一點(diǎn),有以下三項(xiàng):AB=AC,∠1=∠2,AE∥BC,請(qǐng)把其中兩項(xiàng)作為條件,填入下面的“已知”欄中,另一項(xiàng)作為結(jié)論,填入下面的“求證”欄中,使之組成一個(gè)真命題,并寫出證明過程.
已知:
AE∥BC,∠1=∠2
AE∥BC,∠1=∠2
,
求證:
AB=AC
AB=AC

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年山東臨沂中考數(shù)學(xué)試卷及答案 題型:059

數(shù)學(xué)課上,張老師出示了問題:如圖,四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn).∠AEF=90°,且EF交正方形外角∠DCG的平行線CF于點(diǎn)F,求證:AEEF

經(jīng)過思考,小明展示了一種正確的解題思路:取AB的中點(diǎn)M,連接ME,則AMEC,易證△AME≌△ECF,所以AE=EF.

在此基礎(chǔ)上,同學(xué)們作了進(jìn)一步的研究:

(1)小穎提出:如圖,如果把“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC上(除B,C外)的任意一點(diǎn)”,其它條件不變,那么結(jié)論“AEEF”仍然成立,你認(rèn)為小穎的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請(qǐng)說明理由;

(2)小華提出:如圖,點(diǎn)EBC的延長(zhǎng)線上(除C點(diǎn)外)的任意一點(diǎn),其他條件不變,結(jié)論“AEEF”仍然成立.你認(rèn)為小華的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:山東省臨沂市2010屆九年級(jí)學(xué)業(yè)考試樣卷數(shù)學(xué)試題 題型:059

數(shù)學(xué)課上,張老師出示了問題:如圖,四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn),∠AEF=90°,且EF交正方形外角∠DCG的平行線CF于點(diǎn)F,求證:AE=EF

經(jīng)過思考,小明展示了一種正確的解題思路:取AB的中點(diǎn)M,連結(jié)ME,則AM=EC,易證△AME≌△ECF,所以AE=EF.

在此基礎(chǔ)上,同學(xué)們作了進(jìn)一步的研究:

(1)小穎提出:如圖,如果把“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC上(除B,C外)的任意一點(diǎn)”,其它條件不變,那么結(jié)論“AE=EF”仍然成立,你認(rèn)為小穎的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請(qǐng)說明理由;

(2)小華提出:如圖,點(diǎn)E是BC的延長(zhǎng)線上(除C點(diǎn)外)的任意一點(diǎn),其他條件不變,結(jié)論“AE=EF”仍然成立.你認(rèn)為小華的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案