精英家教網 > 初中數學 > 題目詳情

【題目】已知:在△ABC中,以AC邊為直徑的⊙O交BC于點D,在劣弧 上取一點E使∠EBC=∠DEC,延長BE依次交AC于點G,交⊙O于H.
(1)求證:AC⊥BH;
(2)若∠ABC=45°,⊙O的直徑等于10,BD=8,求CE的長.

【答案】
(1)證明:連接AD,

∵∠DAC=∠DEC,∠EBC=∠DEC,

∴∠DAC=∠EBC,

∵AC是⊙O的直徑,

∴∠ADC=90°,

∴∠DCA+∠DAC=90°,

∴∠EBC+∠DCA=90°,

∴∠BGC=180°﹣(∠EBC+∠DCA)=180°﹣90°=90°,

∴AC⊥BH


(2)解:∵∠BDA=180°﹣∠ADC=90°,∠ABC=45°,

∴∠BAD=45°,

∴BD=AD,

∵BD=8,∴AD=8,

在直角三角形ADC中,AD=8,AC=10,

根據勾股定理得:DC=6,則BC=BD+DC=14,

∵∠EBC=∠DEC,∠BCE=∠ECD,

∴△BCE∽△ECD,

,即CE2=BCCD=14×6=84,

∴CE= =2


【解析】(1)連接AD,由圓周角定理即可得出∠DAC=∠DEC,∠ADC=90°,再根據直角三角形的性質即可得出結論;(2)由∠BDA=180°﹣∠ADC=90°,∠ABC=45°可求出∠BAD=45°,利用勾股定理即可得出DC的長,進而求出BC的長,由已知的一對角線段和公共角,根據兩對對應角相等的兩三角形相似可得三角形BCE與三角形EDC相似,由相似得比例即可求出CE的長.
【考點精析】利用勾股定理的概念和圓周角定理對題目進行判斷即可得到答案,需要熟知直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】數學家華羅庚在一次出國訪問途中,看到飛機上鄰座的乘客閱讀的雜志上有一道智力題:求59319的立方根.華羅庚脫口而出:39.眾人感覺十分驚奇,請華羅庚給大家解讀了其中的奧秘.

你知道怎樣迅速準確的計算出結果嗎?請你按下面的問題試一試:

,又

,

能確定59319的立方根是個兩位數.

59319的個位數是9,又,

能確定59319的立方根的個位數是9.

③如果劃去59319后面的三位319得到數59,

,則,可得,

由此能確定59319的立方根的十位數是3

因此59319的立方根是39.

(1)現在換一個數110592,按這種方法求立方根,請完成下列填空.

①它的立方根是 位數.

②它的立方根的個位數是

③它的立方根的十位數是

110592的立方根是

(2)請直接填寫結果:

;

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校開展了以“人生觀、價值觀”為主題的班隊活動.活動結束后,初三(2)班數學興趣小組提出了5個主要觀點并在本班50名學生中進行了調査(要求每位同學只選自己最認可的一項觀點),并制成了如圖所示的扇形統(tǒng)計圖.
(1)該班學生選擇“和諧”觀點的有人,在扇形統(tǒng)計圖中,“和諧”觀點所在扇形區(qū)域的圓心角是
(2)如果該校有1500名初三學生.利用樣本估計選擇“感恩”觀點的初三學生約有人.
(3)如果數學興趣小組在這5個主要觀點中任選兩項觀點在全校學生中進行調查.求恰好選到“和諧”和“感恩”觀點的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校120名學生某一周用于閱讀課外書籍的時間的頻率分布直方圖如圖所示其中閱讀時間是8~10小時的頻數和頻率分別是( )

A. 150.125 B. 150.25 C. 300.125 D. 300.25

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列說法正確的是(

A.互為相反數的兩數絕對值一定相等B.互為相反數的兩數相乘,積一定是負數

C.絕對值等于它本身的數是正數D.零的相反數沒有意義

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列圖形具有四條對稱軸的是(

A.等邊三角形B.平行四邊形C.矩形D.正方形

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某公交公司有A,B型兩種客車,它們的載客量和租金如下表:

A

B

載客量(人/輛)

45

30

租金(元/輛)

400

280

某中學根據實際情況,計劃租用A,B型客車共5輛,同時送七年級師生到基地校參加社會實踐活動.設租用A型客車x輛,根據要求回答下列問題:

(1)用含x的式子填寫下表:

車輛數(輛)

載客量

租金(元)

A

x

45x

400x

B

5﹣x

   

   

(2)若要保證租車費用不超過1900元,求x的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】放風箏是大家喜愛的一種運動.星期天的上午小明在大洲廣場上放風箏.如圖他在A處時不小心讓風箏掛在了一棵樹的樹梢上,風箏固定在了D處.此時風箏線AD與水平線的夾角為30°. 為了便于觀察.小明迅速向前邊移動邊收線到達了離A處7米的B處,此時風箏線BD與水平線的夾角為45°.已知點A、B、C在冋一條直線上,∠ACD=90°.請你求出小明此吋所收回的風箏線的長度是多少米?(本題中風箏線均視為線段, ≈1.414, ≈1.732.最后結果精確到1米)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某公園的門票價格如下表所示:

某校九年級甲、乙兩個班共100多人去該公園舉行畢業(yè)聯(lián)歡活動,其中甲班有50多人,乙班不足50人,如果以班為單位分別買門票,兩個班一共應付920元;如果兩個班聯(lián)合起來作為一個團體購票,一共要付515元,問甲、乙兩班分別有多少人?

查看答案和解析>>

同步練習冊答案