已知ax4+bx3+cx2+dx+e=(2x-1)4,則a+c的值是


  1. A.
    39
  2. B.
    40
  3. C.
    41
  4. D.
    42
B
分析:由ax4+bx3+cx2+dx+e=(2x-1)4,把(2x-1)4展開(kāi)后根據(jù)次數(shù)相等時(shí)系數(shù)相等即可求解.
解答:(2x-1)4=(2x-1)2×(2x-1)2
=16x4-32x3+24x2-8x+1,
由ax4+bx3+cx2+dx+e=(2x-1)4,
∴a=16,c=24.
故a+c=40.
故選B.
點(diǎn)評(píng):本題考查了完全平方公式,屬于基礎(chǔ)題,關(guān)鍵是根據(jù)展開(kāi)后次數(shù)相等的項(xiàng)的系數(shù)對(duì)應(yīng)相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

7、已知ax4+bx3+cx2+dx+e=(2x-1)4,則a+c的值是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:期末題 題型:解答題

已知有理數(shù)a和有理數(shù)b都滿足多項(xiàng)式A和多項(xiàng)式B,若A=-2x5-ax4+3x4-bx3+2x3+5x2-x+1缺四次項(xiàng)和三次項(xiàng),
(1)求a和b的值
(2)化簡(jiǎn)B=|x-a|+|x+b|

查看答案和解析>>

同步練習(xí)冊(cè)答案