解:①(2a
2-3b+4c)(2a
2+3b-4c),
=(2a
2)
2-(3b-4c)
2,
=4a
4-9b
2+24bc-16c
2;
②(2x+3y)
2(2x-3y)
2,
=(4x
2-9y
2)
2,
=16x
4-72x
2y
2+81y
4;
③(5a-3b)(5a+3b)(25a
2-9b
2),
=(25a
2-9b
2)
2,
=625a
4-450a
2b
2+81b
4;
④(x+1)(x
2+1)(x
4+1)(x-1),
=(x
2-1)(x
2+1)(x
4+1),
=(x
4-1)(x
4+1),
=x
8-1;
⑤
,
=(1-
)(1+
)×(1-
)(1+
)×(1-
)(1+
)×…×(1-
)(1+
),
=
×
×
×
×
×
×…×
×
,
=
.
分析:①根據(jù)多項(xiàng)式乘多項(xiàng)式法則:先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加.
②運(yùn)用平方差公式和完全平方公式計(jì)算.
③運(yùn)用平方差公式和完全平方公式計(jì)算.
④運(yùn)用平方差公式計(jì)算.
⑤根據(jù)1-
=
,先將各因式進(jìn)行轉(zhuǎn)換,再進(jìn)行約分化簡(jiǎn).
點(diǎn)評(píng):本題主要考查了多項(xiàng)式乘多項(xiàng)式,平方差公式和完全平方公式.第⑤題利用平方差公式將各因式轉(zhuǎn)換成互為倒數(shù)的積是解題的關(guān)鍵.