精英家教網 > 初中數學 > 題目詳情

如圖,點O是等邊△ABC內一點,∠AOB=110º,∠BOC=,將△BOC繞點C按順時針方向旋轉60º得△ADC,連接OD.
(1)△COD是什么三角形?說明理由;
(2)若AO=,AD=,OD=(為大于1的整數),求的度數;
(3)當為多少度時,△AOD是等腰三角形?

(1)△COD是等邊三角形
(2)150º;
(3)為140º或110º或125º時,△AOD是等腰三角形.

解析

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

21、如圖,點D是等邊三角形ABC內的一點,將△BDC繞點C順時針旋轉60°,試畫出旋轉后的三角形,并指出圖中的全等圖形以及它們的對應頂點、對應邊和對應角.

查看答案和解析>>

科目:初中數學 來源: 題型:

16、如圖,點P是等邊三角形ABC內一點,BP=5cm,△PAB繞點B旋轉后能與△MCB重合,連接PM,則PM=
5
cm.

查看答案和解析>>

科目:初中數學 來源: 題型:

21、如圖,點O是等邊△ABC內一點,∠AOB=110°,∠BOC=a.以OC為一邊作等邊三角形OCD,連接AC、AD.
(1)當a=150°時,試判斷△AOD的形狀,并說明理由;
(2)探究:當a為多少度時,△AOD是等腰三角形?

查看答案和解析>>

科目:初中數學 來源: 題型:

(2011•清流縣質檢)星期天,小明在解答下列題目時卡殼了.
題目1:如圖①,在△ABC中,AC=BC,∠ACB=90°,O為△ABC內的一點,OC=1,OA=
3
,OB=
5
.求∠AOC的度數.
小明去請教小穎正在解答下列題目.
題目2:如圖②,點O是等邊三角形ABC內的一點,將△BCO繞C順時針方向旋轉60°得到△ADC,連接OD.
(1)試判斷△COD的形狀,并說明理由;
(2)當∠COB=150°時,試判斷△AOD的形狀,并寫出OA、OB、OC三者之間的等量關系式.
小穎說:“等等,等我做完了,我們一起來看.”小明看完,小穎做完后高興地說:“哈哈,太好了,我會了.”聰明的同學,你能先解答完題目2,再根據解答所得到的啟迪來完成題目1嗎?寫出你的解答過程.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖:點O是等邊△ABC內一點,∠AOB=110°,∠BOC=α.將線段OC繞點C按順時針方向旋轉60°得到線段CD,連接OD、AD.
(1)求證:AD=BO;
(2)當α=150°時,試判斷△AOD的形狀,并說明理由;
(3)探究:當α為多少度時(直接寫出答案),△AOD是等腰三角形?

查看答案和解析>>

同步練習冊答案