精英家教網(wǎng)如圖:等邊△PQR,∠APB=120°,AP=2
7
,AQ=4,PB=
14
,則RQ的長為
 
,△PRB的面積為
 
分析:根據(jù)已知條件,只要證得△PAQ∽△BPR,就可得:PA:BP=AQ:PR,則可算出PR、BR的長,在等邊△PQR中,PR=RQ,可求出它的高,也就是△PRB的高,由此面積也可求.
解答:解:∵∠QPR=∠PQR=∠PRQ=60°
∴∠PQA=∠PRB=120°
∵∠APB=120°
∴∠APQ+∠BPR=∠APB-∠QPR=120°-60°=60°
∵在△APQ中,∠A+∠APQ=180°-∠AQP=60°
∴∠A=∠BPR
∴△PAQ∽△BPR
∴PA:BP=AQ:PR
即2
7
14
=4:PR
∴PR=2
2

在等邊△PQR中,PQ=RQ=PR=2
2
,底邊RQ的高為
(2
2
)
2
-(
2
)
2
=
6

∴PQ:BR=AQ:PR,即2
2
:BR=4:2
2
,BR=2
∵△PRB的高為等邊△PQR的高
∴△PRB的面積為
1
2
×2×
6
=
6
點(diǎn)評(píng):該題主要考查了相似三角形的判定及性質(zhì),及三角形面積的求法,注意對(duì)應(yīng)邊之比.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將等邊三角形PQR放在正方形ABCD上,邊QR與AB完全重合.則:
(1)圖①中點(diǎn)P與正方形中的任意兩個(gè)頂點(diǎn)能構(gòu)成多少個(gè)等腰三角形(等邊△PQR除外)?直接寫出這些三角形的名稱
 

(2)現(xiàn)在將正方形ABCD固定不動(dòng),等邊三角形PQR繞著點(diǎn)R旋轉(zhuǎn),使點(diǎn)P與C重合(如圖②,這算第1步,點(diǎn)P落在P1處),再繞著點(diǎn)P旋轉(zhuǎn),使點(diǎn)Q與點(diǎn)D重合(如圖③,這算第2步,點(diǎn)P落在P2處),重復(fù)這樣的步驟,可得到圖④…,則請你探究:經(jīng)過
 
步,△PQR首次與原位置重合;又經(jīng)過
 
步,點(diǎn)P首次回到原處.
精英家教網(wǎng)
(3)若正方形ABCD的邊長等于4,則按第(2)題的方法從圖①開始,連續(xù)旋轉(zhuǎn)了2006步,最后點(diǎn)P落在P2006處.請畫出此時(shí)圖形的位置,并計(jì)算此時(shí)點(diǎn)P2006到RA的距離.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖:等邊△PQR,∠APB=120°,AP=數(shù)學(xué)公式,AQ=4,PB=數(shù)學(xué)公式,則RQ的長為________,△PRB的面積為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:《第27章 相似》2009年單元測試(解析版) 題型:填空題

如圖:等邊△PQR,∠APB=120°,AP=,AQ=4,PB=,則RQ的長為    ,△PRB的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖:等邊△PQR,∠APB=120°,AP=,AQ=4,PB=,則RQ的長為 (           ) △PRB的面積為           。

 


查看答案和解析>>

同步練習(xí)冊答案