(2006•欽州)如圖,有一腰長為5,底邊長為4的等腰三角形紙片,現(xiàn)沿著等腰三角形底邊上的中線將紙片剪開,得到兩個全等的直角三角形紙片,用這兩個直角三角形紙片拼成的平面圖形中,是四邊形的共有( )

A.2個
B.3個
C.4個
D.5個
【答案】分析:根據(jù)四邊形的概念和特性,結(jié)合實際操作即可解.
解答:解:以長直角邊吻合來拼可得到一個平行四邊形,以短直角邊吻合也可得到一個平行四邊形,以斜邊吻合來拼可得到一個不規(guī)則四邊形和一個長方形.
故選C.
點評:本題如果經(jīng)過動手操作可很快得到答案.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2006•欽州)如圖,在平面直角坐標系中,矩形OABC的頂點O為原點,E為AB上一點,把△CBE沿CE折疊,使點B恰好落在OA邊上的點D處,點A,D的坐標分別為(5,0)和(3,0).
(1)求點C的坐標;
(2)求DE所在直線的解析式;
(3)設(shè)過點C的拋物線y=2x2+bx+c(b<0)與直線BC的另一個交點為M,問在該拋物線上是否存在點G,使得△CMG為等邊三角形?若存在,求出點G的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年浙江省寧波市余姚市梨洲中學質(zhì)量分析數(shù)學試卷(解析版) 題型:解答題

(2006•欽州)如圖,在平面直角坐標系中,矩形OABC的頂點O為原點,E為AB上一點,把△CBE沿CE折疊,使點B恰好落在OA邊上的點D處,點A,D的坐標分別為(5,0)和(3,0).
(1)求點C的坐標;
(2)求DE所在直線的解析式;
(3)設(shè)過點C的拋物線y=2x2+bx+c(b<0)與直線BC的另一個交點為M,問在該拋物線上是否存在點G,使得△CMG為等邊三角形?若存在,求出點G的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年廣西欽州市中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•欽州)如圖,在平面直角坐標系中,矩形OABC的頂點O為原點,E為AB上一點,把△CBE沿CE折疊,使點B恰好落在OA邊上的點D處,點A,D的坐標分別為(5,0)和(3,0).
(1)求點C的坐標;
(2)求DE所在直線的解析式;
(3)設(shè)過點C的拋物線y=2x2+bx+c(b<0)與直線BC的另一個交點為M,問在該拋物線上是否存在點G,使得△CMG為等邊三角形?若存在,求出點G的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年廣西欽州市中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

(2006•欽州)如圖,在平面直角坐標系中,矩形OABC的頂點O為原點,E為AB上一點,把△CBE沿CE折疊,使點B恰好落在OA邊上的點D處,點A,D的坐標分別為(5,0)和(3,0).
(1)求點C的坐標;
(2)求DE所在直線的解析式;
(3)設(shè)過點C的拋物線y=2x2+bx+c(b<0)與直線BC的另一個交點為M,問在該拋物線上是否存在點G,使得△CMG為等邊三角形?若存在,求出點G的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年廣西欽州市中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

(2006•欽州)如圖,在△ABC中,∠C=90°,在AB邊上取一點D,使BD=BC,過D作DE⊥AB交AC于E,AC=8,BC=6.求DE的長.

查看答案和解析>>

同步練習冊答案