矩形ABCD中,AB=10,BC=3,E為AB邊的中點,P為CD邊上的點,且△AEP是腰長為5的等腰三角形,則DP=________.

4或1或9
分析:首先根據(jù)題意畫出圖形,共分3種情況,畫出圖形后根據(jù)勾股定理即可算出DP的長.
解答:(1)如圖1,當(dāng)AE=EP=5時,
過P作PM⊥AB,
∴∠PMB=90°,
∵四邊形ABCD是矩形,
∴∠B=∠C=90°,
∴四邊形BCPM是矩形,
∴PM=BC=3,
∵PE=5,
∴EM===4,
∵E是AB中點,
∴BE=5,
∴BM=PC=5-4=1,
∴DP=10-1=9;
(2)如圖2,當(dāng)AE=AP=5時,DP===4;
(3)如圖3,當(dāng)AE=EP=5時,
過P作PF⊥AB,
∵四邊形ABCD是矩形,
∴∠D=∠DAB=90°,
∴四邊形BCPM是矩形,
∴PF=AD=3,
∵PE=5,
∴EF==4,
∵E是AB中點,
∴AE=5,
∴DP=AF=5-4=1.
故答案為:1或4或9.
點評:此題主要考查了勾股定理的運用,以及矩形的判定,關(guān)鍵是考慮各種情況,正確畫出圖形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知矩形ABCD中,AB=8,BC=5π.分別以B,D為圓心,AB為半徑畫弧,兩弧分別交對角線BD于點E,F(xiàn),則圖中陰影部分的面積為(  )
A、4πB、5πC、8πD、10π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

矩形ABCD中,AB=3,BC=4,以點A為圓心畫圓,使B,C,D三點中至少有一點在⊙A內(nèi),且至少有一點在⊙A外,則⊙O的半徑r的取值范圍為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•溧水縣一模)如圖,矩形ABCD中,AB=6,BC=3.點E在線段BA上從B點以每秒1個單位的速度出發(fā)向A點運動,F(xiàn)是射線CD上一動點,在點E、F運動的過程中始終保持EF=5,且CF>BE,點P是EF的中點,連接AP.設(shè)點E運動時間為ts.

(1)在點E運動過程中,AP的長度是如何變化的?
D
D

A.一直變短     B.一直變長    C.先變長后變短    D.先變短后變長
(2)在點E、F運動的過程中,AP的長度存在一個最小值,當(dāng)AP的長度取得最小值時,點P的位置應(yīng)該在
AD的中點
AD的中點

(3)以P為圓心作⊙P,當(dāng)⊙P與矩形ABCD三邊所在直線都相切時,求出此時t的值,并指出此時⊙P的半徑長..

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD中,AB=4,AD=5,E是CD上的一點,將△ADE沿AE折疊,點D剛好與BC邊上點F重合,則線段CE的長為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD中,AB=8,BC=10,沿AF折疊矩形ABCD,使點D剛好落在邊BC上的點E處,則折痕AF的長為
5
5
5
5

查看答案和解析>>

同步練習(xí)冊答案