【答案】
分析:(1)四邊形ABCE是菱形.由平移得到四邊形ABCE是平行四邊形,又AB=BC,可以推出四邊形ABCE是菱形;
(2)①四邊形PQED的面積不發(fā)生變化.根據(jù)菱形的性質(zhì)和已知條件可以求出菱形的面積,過(guò)A作AH⊥BD于H,再根據(jù)三角形的面積公式可以求出AH,由菱形的對(duì)稱(chēng)性知△PBO≌△QEO,所以BP=QE,現(xiàn)在可以得到S
四邊形PQED=S
△BED,而S
△BED的面積可以求出,所以四邊形PQED的面積不發(fā)生變化.
②如圖2,當(dāng)點(diǎn)P在BC上運(yùn)動(dòng),使△PQR與△COB相似時(shí),∵∠2是△OBP的外角,∴∠2>∠3,∴∠2不與∠3對(duì)應(yīng),∴∠2與∠1對(duì)應(yīng),即∠2=∠1,∴OP=OC=3,過(guò)O作OG⊥BC于G,則G為PC的中點(diǎn),△OGC∽△BOC,根據(jù)相似三角形的對(duì)應(yīng)線(xiàn)段成比例可以求出CG,而PB=BC-PC=BC-2CG,根據(jù)這個(gè)等式就可以求出BP的長(zhǎng).
解答:解:(1)四邊形ABCE是菱形.(1分)
∵△ECD是由△ABC沿BC平移得到的,
∴EC∥AB,且EC=AB,
∴四邊形ABCE是平行四邊形,(3分)
又∵AB=BC,
∴四邊形ABCE是菱形;(4分)
(2)①四邊形PQED的面積不發(fā)生變化.(5分)
方法一:∵ABCE是菱形,
∴AC⊥BE,OC=
AC=3,
∵BC=5,
∴BO=4,
過(guò)A作AH⊥BD于H,(如圖1).
∵S
△ABC=
BC×AH=
AC×BO,
即:
×5×AH=
×6×4,
∴AH=
.(6分)
或∵∠AHC=∠BOC=90°,∠BCA公用,
∴△AHC∽△BOC,
∴AH:BO=AC:BC,
即:AH:4=6:5,
∴AH=
.6分)
由菱形的對(duì)稱(chēng)性知,△PBO≌△QEO,
∴BP=QE,
∴S
四邊形PQED=
(QE+PD)×QR=
(BP+PD)×AH=
BD×AH
=
×10×
=24.(8分)
方法二:由菱形的對(duì)稱(chēng)性知,△PBO≌△QEO,
∴S
△PBO=S
△QEO,(6分)
∵△ECD是由△ABC平移得到的,
∴ED∥AC,ED=AC=6,
又∵BE⊥AC,
∴BE⊥ED,(7分)
∴S
四邊形PQED=S
△QEO+S
四邊形POED=S
△PBO+S
四邊形POED=S
△BED=
×BE×ED=
×8×6=24.(8分)
②方法一:如圖2,當(dāng)點(diǎn)P在BC上運(yùn)動(dòng),使△PQR與△COB相似時(shí),
∵∠2是△OBP的外角,
∴∠2>∠3,
∴∠2不與∠3對(duì)應(yīng),
∴∠2與∠1對(duì)應(yīng),
即∠2=∠1,
∴OP=OC=3(9分)
過(guò)O作OG⊥BC于G,則G為PC的中點(diǎn),
∴△OGC∽△BOC,(10分)
∴CG:CO=CO:BC,
即:CG:3=3:5,
∴CG=
,(11分)
∴PB=BC-PC=BC-2CG=5-2×
=
.(12分)
方法二:如圖3,當(dāng)點(diǎn)P在BC上運(yùn)動(dòng),使△PQR與△COB相似時(shí),
∵∠2是△OBP的外角,
∴∠2>∠3,
∴∠2不與∠3對(duì)應(yīng),
∴∠2與∠1對(duì)應(yīng),(9分)
∴QR:BO=PR:OC,即:
:4=PR:3,
∴PR=
,(10分)
過(guò)E作EF⊥BD于F,設(shè)PB=x,則RF=QE=PB=x,
DF=
=
,(11分)
∴BD=PB+PR+RF+DF=x+
+x+
=10,x=
.(12分)
方法三:如圖4,若點(diǎn)P在BC上運(yùn)動(dòng),使點(diǎn)R與C重合,
由菱形的對(duì)稱(chēng)性知,O為PQ的中點(diǎn),
∴CO是Rt△PCQ斜邊上的中線(xiàn),
∴CO=PO,(9分)
∴∠OPC=∠OCP,
此時(shí),Rt△PQR∽R(shí)t△CBO,(10分)
∴PR:CO=PQ:BC,
即PR:3=6:5,
∴PR=
(11分)
∴PB=BC-PR=5-
=
.(12分)
點(diǎn)評(píng):此題主要考查了圖形變換,把圖形的變換放在平行四邊形,菱形的背景之中,利用特殊四邊形的性質(zhì)探究圖形變換的規(guī)律.