如圖1,在△ABC中,D、E、F分別為三邊的中點,G點在邊AB上,且DG平分△ABC的周長,設BC=a、AC=b、AB=c.
(1)求線段BG的長;
(2)求證:DG平分∠EDF;
(3)連接CG,如圖2,若△GBD ∽△GDF,求證:BG⊥CG.

(1)(b+c);(2)證明見解析;(3)證明見解析.

解析試題分析:(1)由△BDG與四邊形ACDG的周長相等與BD=CD,易得BG=AC+AG,即可得BG=(AB+AC);
(2)由點D、F分別是BC、AB的中點,利用三角形中位線的性質,易得DF=AC=b,由FG=BG-BF,求得DF=FG,又由DE∥AB,即可求得∠FDG=∠EDG;
(3)由△BDG與△DFG相似,∠DFG>∠B,∠BGD=∠DGF(公共角),可得∠B=∠FDG,又由(2)得:∠FGD=∠FDG,易證得DG=BD=CD,可得B、G、C三點在以BC為直徑的圓周上,由圓周角定理,即可得BG⊥CG.
試題解析:(1)解:∵△BDG與四邊形ACDG的周長相等,
∴BD+BG+DG=AC+CD+DG+AG,
∵D是BC的中點,
∴BD=CD,
∴BG=AC+AG,
∵BG+(AC+AG)=AB+AC,
∴BG=(AB+AC)=(b+c);
(2)證明:∵點D、F分別是BC、AB的中點,
∴DF=AC=b,BF=AB=c,
又∵FG=BG-BF=(b+c)-c=b,
∴DF=FG,
∴∠FDG=∠FGD,
∵點D、E分別是BC、AC的中點,
∴DE∥AB,
∴∠EDG=∠FGD,
∴∠FDG=∠EDG,
即DG平分∠EDF;
(3)證明:∵△BDG與△DFG相似,∠DFG>∠B,∠BGD=∠DGF(公共角),
∴∠B=∠FDG,
由(2)得:∠FGD=∠FDG,
∴∠FGD=∠B,
∴DG=BD,
∵BD=CD,
∴DG=BD=CD,
∴B、G、C三點在以BC為直徑的圓周上,
∴∠BGC=90°,
即BG⊥CG.
考點:1.相似三角形的判定與性質;2.三角形中位線定理.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:填空題

如圖,DE是△ABC的中位線,則△ADE與△ABC的面積的比是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,⊙O的直徑AC與弦BD相交于點F,點E是DB延長線上一點,∠EAB=∠ADB.
(1)求證:EA是⊙O的切線;
(2)已知點B是EF的中點,求證:以A、B、C為頂點的三角形與△AEF相似;
(3)已知AF=4,CF=2,在(2)的條件下,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

好學的小宸利用電腦作了如下的探索:
(1)如圖①,將邊長為2的等邊三角形復制若干個后向右平移,使一條邊在同一直線上.則△A2C1B1的面積為   
(2)求△A4C3B3的面積;
(3)在保持圖①中各三角形的邊OB1=B1B2=B2B3=B3B4=2不變的前提下,小宸又作了如下探究:將頂點A1、A2、A3、A4向上平移至同一高度(如圖②),若OA4=OB4,試判斷以OA2、OA3和OA4為三邊能否構成三角形?若能,請判斷這個三角形的形狀;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在如圖所示的正方形網格中,每個小正方形的邊長為1,格點三角形(頂點是網格線的交點的三角形)ABC的頂點A,C的坐標分別為(-2,4),(2,1).
(1)請在如圖所示的網格平面內作出平面直角坐標系;
(2)請作出△ABC關于y軸對稱的△A′B′C′;
(3)若△ADE是△ABC關于點A的位似圖形,且E的坐標為(6,-2),則點D的坐標為     , 四邊形BCED面積是        

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在□ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點,且∠AFE=∠B.
(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

類比、轉化、從特殊到一般等思想方法,在數(shù)學學習和研究中經常用到,如下是一個案例,請補充完整,原題:如圖1,在平行四邊形ABCD中,點E是BC的中點,點F是線段AE上一點,BF的延長線交射線CD于點G.若=3,求的值.

(1)嘗試探究:
在圖1中,過點E作EH∥AB交BG于點H,則AB和EH的數(shù)量關系是________,
CG和EH的數(shù)量關系是________,
的值是________.
(2)類比延伸:
如圖2,在原題條件下,若=m(m>0)則的值是________(用含有m的代數(shù)式表示),試寫出解答過程.
(3)拓展遷移:
如圖3,梯形ABCD中,DC∥AB,點E是BC的延長線上的一點,AE和BD相交于點F,若=a,=b(a>0,b>0)則的值是________(用含a、b的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

亮亮和穎穎住在同一幢住宅樓,兩人準備用測量影子的方法測算其樓高,但恰逢陰天,于是兩人商定改用下面方法:如圖,亮亮蹲在地上,穎穎站在亮亮和樓之間,兩人適當調整自己的位置,當樓的頂部,穎穎的頭頂及亮亮的眼睛恰在一條直線上時,兩人分別標定自己的位置.然后測出兩人之間的距離,穎穎與樓之間的距離,,在一條直線上),穎穎的身高,亮亮蹲地觀測時眼睛到地面的距離.你能根據(jù)以上測量數(shù)據(jù)幫助他們求出住宅樓的高度嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,在△ABC中,∠B= 90°,點P從A點開始沿AB邊向點B以1厘米/秒的速度移動,點Q從B點開始沿BC邊向點C以2厘米/秒的速度移動。

(1)如果P、Q分別從A、B兩點同時出發(fā),經過幾秒鐘,△PBQ的面積等于8厘米2?
(2)如果P、Q兩分別從A、B兩點同時出發(fā),并且P到B又繼續(xù)在BC邊上前進,Q到C后又繼續(xù)在CA邊上前進,經過幾秒鐘,△PCQ的面積等于12﹒6厘米2

查看答案和解析>>

同步練習冊答案