7.如圖所示,某城市十字路口旁有一居民區(qū)A,現(xiàn)在城市規(guī)劃局想建設(shè)兩個(gè)公交車站以方便小區(qū)居民的工作與生活,那么兩車站應(yīng)建在什么位置最合適呢?請你在圖中畫出來.

分析 根據(jù)垂線段最短即可解決問題.

解答 解:作AM⊥直線a垂足為M,AN⊥直線b垂足為N,點(diǎn)M、N就是所求的點(diǎn)(理由垂線段最短).見下圖.

點(diǎn)評 本題考查垂線段最短、垂線的畫法,利用垂線段最短或兩點(diǎn)之間線段最短是解決最短問題的常用手段.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.已知拋物線y=x2+mx+7與x軸的一個(gè)交點(diǎn)是(3-$\sqrt{2}$,0),求m的值及另一個(gè)交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

7.已知α、β是方程x2-3x+1=0的兩根,則α3-$\frac{3}{β}$=$\frac{9+5\sqrt{5}}{2}$或$\frac{9-5\sqrt{5}}{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.學(xué)校為了獎勵初三優(yōu)秀畢業(yè)生,計(jì)劃購買一批平板電腦和一批學(xué)習(xí)機(jī),經(jīng)投標(biāo),購買1臺平板電腦3000元,購買1臺學(xué)習(xí)機(jī)800元.
(1)學(xué)校根據(jù)實(shí)際情況,決定購買平板電腦和學(xué)習(xí)機(jī)共100臺,要求購買的總費(fèi)用不超過168000元,則購買平板電腦最多多少臺?
(2)在(1)的條件下,購買學(xué)習(xí)機(jī)的臺數(shù)不超過購買平板電腦臺數(shù)的1.7倍.請問有哪幾種購買方案?哪種方案最省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.在平面直角坐標(biāo)系中,已知點(diǎn)B(-2$\sqrt{2}$,0),A(m,0)($-\sqrt{2}<m<0$)以AB為邊在x軸下方作正方形ABCD,連結(jié)OD,過B作BE垂直于OD于E,與AD相交于點(diǎn)F.
(1)求證:BF=DO;
(2)如果OE=DE,試求經(jīng)過B、O、F三點(diǎn)的拋物線y=a(x-x1)(x-x2)中a的值;
(3)在(2)的條件下,在x軸上是否存在點(diǎn)P,使該點(diǎn)關(guān)于直線BE的對稱點(diǎn)在拋物線上?若存在,請直接寫出所有這樣的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

12.如圖,在△ABC中,AB=AC,∠BAC=90°,點(diǎn)D為射線CB上一點(diǎn),連接AD,以AD為一邊在AD右側(cè)作正方形ADEF,直線EF與直線BC交于點(diǎn)M,若AB=2$\sqrt{2}$,BD=1,則CM的長為$\frac{1}{2}$或$\frac{3}{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.如圖,四邊形ABCD中,AC平分∠BAD,∠ADC+∠ABC=180°,CE⊥AB于E,猜想AD、AE、AB之間的關(guān)系式,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

16.將拋物線y=-3x2+2向左平移1個(gè)單位,再向下平移3個(gè)單位后所得到的拋物線為( 。
A.y=-3(x-1)2-3B.y=-3(x-1)2-1C.y=-3(x=1)2-3D.y=-3(x+1)2-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

17.下列四邊形中,對角線一定相等的是( 。
A.菱形B.矩形C.平行四邊形D.梯形

查看答案和解析>>

同步練習(xí)冊答案