如圖,在Rt△ABC中,∠C=90°,AC=8,∠A的平分線AD=
16
3
3
,求∠B的度數(shù)及邊BC、AB的長.
在Rt△ACD中
∵cos∠CAD=
AC
AD
=
8
16
3
3
=
3
2
,∠CAD為銳角.
∴∠CAD=30°,∠BAD=∠CAD=30°,即∠CAB=60°.
∴∠B=90°-∠CAB=30°.
∵sinB=
AC
AB

∴AB=
AC
sinB
=
8
sin30°
=16.
又∵cosB=
BC
AB
,
∴BC=AB•cosB=16•
3
2
=8
3
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,某校自行車棚的人字架棚頂為等腰三角形,D是AB的中點,中柱CD=1米,∠A=27°,求跨度AB的長(精確到0.01米)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,“五•一”期間在某商貿(mào)大廈上從點A到點B懸掛了一條宣傳條幅,小明和小雯的家正好住在商貿(mào)大廈對面的家屬樓上,小明在四樓D點測得條幅端點A的仰角為30°,測得條幅端點B的俯角為45°;小雯在三樓仰角為45°,測得條幅端點B的俯角為30°.若設樓層高度CD為3米,請你根據(jù)小明和小雯測得的數(shù)據(jù)求出條幅AB的長.
(結果精確到個位,參考數(shù)據(jù)
3
=1.73)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖:小虎家住在高80米的公寓AD內(nèi),他家的河對岸新修了一座大廈的高度,小虎在他家的樓底A測得大廈頂部B的仰角為60°,爬到樓頂D處測得大廈頂部B的仰角為30度.請根據(jù)小虎計算出大廈的高BC.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,某水庫堤壩的橫斷面為梯形,背水坡AD的坡比(坡比是斜坡的鉛直距離與水平距離的比)為1:1.5,迎水坡BC的坡比為1:
3
,壩頂寬CD為3m,壩高CF為10m,則壩底寬AB約為( 。
3
≈1.732,保留3個有效數(shù)字)
A.32.2mB.29.8mC.20.3mD.35.3m

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,鐵路的路基的橫斷面為等腰梯形,其腰的坡度為1:1.5,上底寬為6m,路基高為4m,則路基的下底寬為______m.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

△ABC中,∠A和∠B均為銳角,AC=6,BC=3
3
,且sinA=
3
3
,則cosB的值為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,某人在一棟高層建筑頂部C處測得山坡坡腳A處的俯角為60°,又測得山坡上一棵小樹樹干與坡面交界P處的俯角為45°,已知OA=50米,山坡坡度為
1
2
(即tan∠PAB=
1
2
,其中PB⊥AB),且O、A、B在同一條直線上.
(1)求此高層建筑的高度OC;
(2)求坡腳A處到小樹樹干與坡面交界P處的坡面距離AP的長度.(人的高度及測量儀器高度忽略不計,結果保留根號形式)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在大蜀山山頂有一斜坡AP的坡度為1:2.4,坡長AP為26米,在坡頂A處的同一水平面上有一座安徽衛(wèi)視發(fā)射塔BC,在斜坡底P處測得該塔的塔頂B的仰角為45°,在坡頂A處測得該塔的塔頂B的仰角為76°,求:
(1)坡頂A到地面PQ的距離;
(2)發(fā)射塔BC的高度.(結果保留為整數(shù))
sin76°≈0.97,cos76°≈0.24,tan76°≈4.0,tan14°≈0.525.

查看答案和解析>>

同步練習冊答案