如圖,在以AB為直徑的半圓中,E是弦AC的中點,延長BE交半圓于點D,若OB=2,OE=1,則∠CDE的度數(shù)是________.

30°
分析:連接BC.構(gòu)建∠CAB與∠CDE是同弧所對的圓周角.根據(jù)三角形的中位線定理,求得△AEO是直角三角形,然后在直角三角形AEO中由30°角所對的直角邊是斜邊的一半,求得∠CAB=30°;最后根據(jù)圓周角定理求得∠CDE=30°(同弧所對的圓周角相等).
解答:解:連接BC.
∵AB是直徑,
∴∠ACB=90°;
∵E是弦AC的中點,O是直徑AB的中點,
∴OE∥BC,
∴OE⊥AC;
∵OB=2,OE=1,
∴AO=2,
∴AO=2OE,
∴∠CAB=30°(30°角所對的直角邊是斜邊的一半);
∴∠CDE=30°(同弧所對的圓周角相等);
故答案是:30°.
點評:本題綜合考查了圓周角定理、三角形的中位線定理及含30°角的直角三角形.解答此題時,借助于輔助線BC,構(gòu)建∠CAB與∠CDE是同弧所對的圓周角、OE是直角三角形ABC的中位線,從而在直角三角形AEO中求得∠CAB=30°;然后又有圓周角定理:同弧所對的圓周角相等,求得∠CDE=30°.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

11、如圖,在以AB為直徑的半圓中,E是弦AC的中點,延長BE交半圓于點D,若OB=2,OE=1,則∠CDE的度數(shù)是 
30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在以AB為直徑的半圓O中,C是它的中點,若AC=2,則△ABC的面積是( 。
A、1.5B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•武漢模擬)如圖,在以AB為直徑的半圓中,有一個邊長為1的內(nèi)接正方形CDEF,則,以AC和BC的長為兩根的一元二次方程是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在以AB為直徑的半圓中,有一個邊長2的內(nèi)接正方形CDEF,則以AC和BC的長為兩根的一元二次方程是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在以AB為直徑的半圓上取一點C,分別以AC、BC為直徑在△ABC外作半圓AEC和BFC.當C點在什么位置上時,圖中兩個彎月形AEC和BFC的面積之和最大?

查看答案和解析>>

同步練習(xí)冊答案