如圖,拋物線y=數(shù)學(xué)公式x2+bx+c與x軸交于點(diǎn)A(2,0),交y軸于點(diǎn)B(0,數(shù)學(xué)公式).直線y=kx數(shù)學(xué)公式過點(diǎn)A與y軸交于點(diǎn)C,與拋物線的另一個(gè)交點(diǎn)是D.
(1)求拋物線y=數(shù)學(xué)公式x2+bx+c與直線y=kx數(shù)學(xué)公式的解析式;
(2)設(shè)點(diǎn)P是直線AD上方的拋物線上一動(dòng)點(diǎn)(不與點(diǎn)A、D重合),過點(diǎn)P作 y軸的平行線,交直線AD于點(diǎn)M,作DE⊥y軸于點(diǎn)E.探究:是否存在這樣的點(diǎn)P,使四邊形PMEC是平行四邊形?若存在請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)在(2)的條件下,作PN⊥AD于點(diǎn)N,設(shè)△PMN的周長為l,點(diǎn)P的橫坐標(biāo)為x,求l與x的函數(shù)關(guān)系式,并求出l的最大值.

解:(1)∵y=x2+bx+c經(jīng)過點(diǎn)A(2,0)和B(0,
∴由此得
解得
∴拋物線的解析式是y=x2-x+,
∵直線y=kx-經(jīng)過點(diǎn)A(2,0)
∴2k-=0,
解得:k=
∴直線的解析式是 y=x-,

(2)設(shè)P的坐標(biāo)是(x,x2-x+),則M的坐標(biāo)是(x,x-
∴PM=(x2-x+)-(x-)=-x2-x+4,
解方程 得:,,
∵點(diǎn)D在第三象限,則點(diǎn)D的坐標(biāo)是(-8,-7),由y=x-得點(diǎn)C的坐標(biāo)是(0,-),
∴CE=--(-7)=6,
由于PM∥y軸,要使四邊形PMEC是平行四邊形,必有PM=CE,即-x2-x+4=6
解這個(gè)方程得:x1=-2,x2=-4,
符合-8<x<2,
當(dāng)x=-2時(shí),y=-×(-2)2-×(-2)+=3,
當(dāng)x=-4時(shí),y=-×(-4)2-×(-4)+=,
因此,直線AD上方的拋物線上存在這樣的點(diǎn)P,使四邊形PMEC是平行四邊形,點(diǎn)P的坐標(biāo)是(-2,3)和(-4,);

(3)在Rt△CDE中,DE=8,CE=6 由勾股定理得:DC=
∴△CDE的周長是24,
∵PM∥y軸,
∵∠PMN=∠DCE,
∵∠PNM=∠DEC,
∴△PMN∽△CDE,
=,即=,
化簡整理得:l與x的函數(shù)關(guān)系式是:l=-x2-x+,
l=-x2-x+=-(x+3)2+15,
∵-<0,
∴l(xiāng)有最大值,
當(dāng)x=-3時(shí),l的最大值是15.
分析:(1)將A,B兩點(diǎn)分別代入y=x2+bx+c進(jìn)而求出解析式即可;
(2)首先假設(shè)出P,M點(diǎn)的坐標(biāo),進(jìn)而得出PM的長,將兩函數(shù)聯(lián)立得出D點(diǎn)坐標(biāo),進(jìn)而得出CE的長,利用平行四邊形的性質(zhì)得出PM=CE,得出等式方程求出即可;
(3)利用勾股定理得出DC的長,進(jìn)而根據(jù)△PMN∽△CDE,得出兩三角形周長之比,求出l與x的函數(shù)關(guān)系,再利用配方法求出二次函數(shù)最值即可.
點(diǎn)評:此題主要考查了二次函數(shù)的最值求法以及待定系數(shù)法求二次函數(shù)解析式和函數(shù)交點(diǎn)求法以及平行四邊形的性質(zhì)等知識,利用數(shù)形結(jié)合得出PM=CE進(jìn)而得出等式是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線y=x2+4x與x軸分別相交于點(diǎn)B、O,它的頂點(diǎn)為A,連接AB,AO.
(1)求點(diǎn)A的坐標(biāo);
(2)以點(diǎn)A、B、O、P為頂點(diǎn)構(gòu)造直角梯形,請求一個(gè)滿足條件的頂點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,拋物線y=-x2+2x+m(m<0)與x軸相交于點(diǎn)A(x1,0)、B(x2,0),點(diǎn)A在點(diǎn)B的左側(cè).當(dāng)x=x2-2時(shí),y
0(填“>”“=”或“<”號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖,拋物線y=x2+(k2+1)x+k+1的對稱軸是直線x=-1,且頂點(diǎn)在x軸上方.設(shè)M是直線x=-1左側(cè)拋物線上的一動(dòng)點(diǎn),過點(diǎn)M作x軸的垂線MG,垂足為G,過點(diǎn)M作直線x=-1的垂線MN,垂足為N,直線x=-1與x軸的交于H點(diǎn),若M點(diǎn)的橫坐標(biāo)為x,矩形MNHG的周長為l.
(1)求出k的值;
(2)寫出l關(guān)于x的函數(shù)解析式;
(3)是否存在點(diǎn)M,使矩形MNHG的周長最。咳舸嬖,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•揚(yáng)州)如圖,拋物線y=x2-2x-8交y軸于點(diǎn)A,交x軸正半軸于點(diǎn)B.
(1)求直線AB對應(yīng)的函數(shù)關(guān)系式;
(2)有一寬度為1的直尺平行于y軸,在點(diǎn)A、B之間平行移動(dòng),直尺兩長邊所在直線被直線AB和拋物線截得兩線段MN、PQ,設(shè)M點(diǎn)的橫坐標(biāo)為m,且0<m<3.試比較線段MN與PQ的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線y=x2-2x-3與x軸分別交于A,B兩點(diǎn).
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)求拋物線頂點(diǎn)M關(guān)于x軸對稱的點(diǎn)M′的坐標(biāo),并判斷四邊形AMBM′是何特殊平行四邊形.(不要求說明理由)

查看答案和解析>>

同步練習(xí)冊答案