精英家教網 > 初中數學 > 題目詳情

某課外興趣小組在一次折紙活動中,折疊一張帶有條格的長方形紙片ABCD(如圖1),將點B分別與點A,A1,A2,…,D重合,然后用筆分別描出每條折痕與對應條格所在直線的交點,用平滑的曲線順次連接各交點,得到一條曲線.
探索
如圖2,在平面直角坐標系xOy中,將長方形紙片ABCD的頂點B與原點O重合,BC邊放在x軸的正半軸上,AB=m,AD=n(m≤n),將紙片折疊,MN是折痕,使點B落在邊AD上的E處,過點E作EQ⊥BC,垂足為Q,交直線MN于點P,連接OP
(1)求證:四邊形OMEP是菱形;
(2)設點P坐標為(x,y),求y與x之間的函數關系式,并寫出自變量x的取值范圍.(用含m、n的式子表示)
運用
(3)將長方形紙片ABCD如圖3所示放置,AB=8,AD=12,將紙片折疊,當點B與點D重合時,折痕與DC的延長線交于點F.試問在這條折疊曲線上是否存在K,使得△KCF的面積是△KOC面積的數學公式,若存在,寫出點K的坐標;若不存在,請說明理由.
作業(yè)寶

解:(1)∵AB∥EQ,
∴∠OMP=∠EPM,
∵∠EPM=∠OPM,
∴∠OMP=∠OPM,
∴OM=OP,
∵OM=EM,OP=EP,
∴四邊形OMEP是菱形.

(2)∵E點的坐標為(x,m),
OP=EP=m-y,
∴(m-y)2=x2+y2
y=-+(0<x<).

(3)根據(2)知,點K的坐標為(x,-+4).
設EC的長為x,DE=BE=12-x,DC=8,
x2+82=(12-x)2
x=
同理:GH=,DH=,
△ECF∽△DHF,
=,
=,
解得CF=5,
∴△ECF的面積為:CE•CF=××5=
△OCK的面積為:×12(-+4).
△KCF的面積:×(-+4)+
根據△KCF的面積是△KOC面積得,××12(-+4)=×(-+4)+,
可求出x=4,
所以K的坐標為:(4,1).
分析:(1)如果四邊形的四邊相等,那么這個四邊形是菱形.
(2)根據P點的坐標,可表示出E點的坐標,從而可知道OP的長,用勾股定理表示出解析式.
(3)畫出圖形,從圖上可看出不存在.
點評:本題考查了菱形的判定定理,矩形的性質,相似三角形的性質,相似三角形的面積比等于相似比的平方以及翻折變換的知識.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

綜合實踐
問題背景
某課外興趣小組在一次折紙活動中,折疊一張帶有條格的長方形紙片ABCD(如圖1),將點B分別與點A,A1,A2,…,D重合,然后用筆分別描出每條折痕與對應條格所在直線的交點,用平滑的曲線順次連接各交點,得到一條曲線.
探索
如圖2,在平面直角坐標系xOy中,將長方形紙片ABCD的頂點B與原點O重合,BC邊放在x軸的正半軸上,AB=m,AD=n(m≤n),將紙片折疊,MN是折痕,使點B落在邊AD上的E處,過點E作EQ⊥BC,垂足為Q,交直線MN于點P,連接OP
(1)求證:四邊形OMEP是菱形;
(2)設點P坐標為(x,y),求y與x之間的函數關系式,并寫出自變量x的取值范圍.(用含m、n的式子表示)
運用
(3)將長方形紙片ABCD如圖3所示放置,AB=8,AD=12,將紙片折疊,當點B與點D重合時,折痕與DC的延長線交于點F.試問在這條折疊曲線上是否存在K,使得△KCF的面積是△KOC面積的
53
,若存在,寫出點K的坐標;若不存在,請說明理由.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•岳陽)某數學興趣小組開展了一次課外活動,過程如下:如圖1,正方形ABCD中,AB=6,將三角板放在正方形ABCD上,使三角板的直角頂點與D點重合.三角板的一邊交AB于點P,另一邊交BC的延長線于點Q.
(1)求證:DP=DQ;
(2)如圖2,小明在圖1的基礎上作∠PDQ的平分線DE交BC于點E,連接PE,他發(fā)現PE和QE存在一定的數量關系,請猜測他的結論并予以證明;
(3)如圖3,固定三角板直角頂點在D點不動,轉動三角板,使三角板的一邊交AB的延長線于點P,另一邊交BC的延長線于點Q,仍作∠PDQ的平分線DE交BC延長線于點E,連接PE,若AB:AP=3:4,請幫小明算出△DEP的面積.

查看答案和解析>>

科目:初中數學 來源:2010年江蘇省鎮(zhèn)江市揚中市外國語學校中考數學一模試卷(解析版) 題型:解答題

綜合實踐
問題背景
某課外興趣小組在一次折紙活動中,折疊一張帶有條格的長方形紙片ABCD(如圖1),將點B分別與點A,A1,A2,…,D重合,然后用筆分別描出每條折痕與對應條格所在直線的交點,用平滑的曲線順次連接各交點,得到一條曲線.
探索
如圖2,在平面直角坐標系xOy中,將長方形紙片ABCD的頂點B與原點O重合,BC邊放在x軸的正半軸上,AB=m,AD=n(m≤n),將紙片折疊,MN是折痕,使點B落在邊AD上的E處,過點E作EQ⊥BC,垂足為Q,交直線MN于點P,連接OP
(1)求證:四邊形OMEP是菱形;
(2)設點P坐標為(x,y),求y與x之間的函數關系式,并寫出自變量x的取值范圍.(用含m、n的式子表示)
運用
(3)將長方形紙片ABCD如圖3所示放置,AB=8,AD=12,將紙片折疊,當點B與點D重合時,折痕與DC的延長線交于點F.試問在這條折疊曲線上是否存在K,使得△KCF的面積是△KOC面積的,若存在,寫出點K的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2011年福建省龍巖市長汀縣河田二中中考數學模擬試卷(解析版) 題型:解答題

綜合實踐
問題背景
某課外興趣小組在一次折紙活動中,折疊一張帶有條格的長方形紙片ABCD(如圖1),將點B分別與點A,A1,A2,…,D重合,然后用筆分別描出每條折痕與對應條格所在直線的交點,用平滑的曲線順次連接各交點,得到一條曲線.
探索
如圖2,在平面直角坐標系xOy中,將長方形紙片ABCD的頂點B與原點O重合,BC邊放在x軸的正半軸上,AB=m,AD=n(m≤n),將紙片折疊,MN是折痕,使點B落在邊AD上的E處,過點E作EQ⊥BC,垂足為Q,交直線MN于點P,連接OP
(1)求證:四邊形OMEP是菱形;
(2)設點P坐標為(x,y),求y與x之間的函數關系式,并寫出自變量x的取值范圍.(用含m、n的式子表示)
運用
(3)將長方形紙片ABCD如圖3所示放置,AB=8,AD=12,將紙片折疊,當點B與點D重合時,折痕與DC的延長線交于點F.試問在這條折疊曲線上是否存在K,使得△KCF的面積是△KOC面積的,若存在,寫出點K的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案