如圖,AB是⊙O的直徑,BC交⊙O于點(diǎn)D,DE⊥AC于點(diǎn)E,要使DE是⊙O的切線,還需補(bǔ)充一個條件,則補(bǔ)充的條件不正確的是


  1. A.
    DE=DO
  2. B.
    AB=AC
  3. C.
    CD=DB
  4. D.
    AC∥OD
A
分析:根據(jù)AB=AC,連接AD,利用圓周角定理可以得到點(diǎn)D是BC的中點(diǎn),OD是△ABC的中位線,OD∥AC,然后由DE⊥AC,得到∠ODE=90°,可以證明DE是⊙O的切線.
根據(jù)CD=BD,AO=BO,得到OD是△ABC的中位線,同上可以證明DE是⊙O的切線.
根據(jù)AC∥OD,AC⊥DE,得到∠EDO=90°,可以證明DE是⊙O的切線.
解答:解:當(dāng)AB=AC時,如圖:連接AD,
∵AB是⊙O的直徑,
∴AD⊥BC,
∴CD=BD,
∵AO=BO,
∴OD是△ABC的中位線,
∴OD∥AC,
∵DE⊥AC,
∴DE⊥OD,
∴DE是⊙O的切線.
所以B正確.
當(dāng)CD=BD時,AO=BO,∴OD是△ABC的中位線,
∴OD∥AC
∵DE⊥AC
∴DE⊥OD
∴DE是⊙O的切線.
所以C正確.
當(dāng)AC∥OD時,∵DE⊥AC,∴DE⊥OD.
∴DE是⊙O的切線.
所以D正確.
故選A.
點(diǎn)評:本題考查的是切線的判斷,利用條件判斷DE是⊙O的切線,確定正確選項(xiàng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當(dāng)陽光與水平線成60°角時,電線桿的影子BC的長度為4米,則電線桿AB的高度為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

小亮家窗戶上的遮雨罩是一種玻璃鋼制品,它的頂部是圓柱側(cè)面的一部分(如圖1),它的側(cè)面邊緣上有兩條圓。ㄈ鐖D2),其中頂部圓弧AB的圓心O1在豎直邊緣AD上,另一條圓弧BC的圓心O2在水平邊緣DC的延長線上,其圓心角為90°,請你根據(jù)所標(biāo)示的尺寸(單位:cm)解決下面的問題.(玻璃鋼材料的厚度忽略不計(jì),π取3.1416)
(1)計(jì)算出弧AB所對的圓心角的度數(shù)(精確到0.01度)及弧AB的長度;(精確到0.1cm)
(2)計(jì)算出遮雨罩一個側(cè)面的面積;(精確到1cm2
(3)制做這個遮雨罩大約需要多少平方米的玻璃鋼材料.(精確到精英家教網(wǎng)0.1平方米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示是永州八景之一的愚溪橋,橋身橫跨愚溪,面臨瀟水,橋下冬暖夏涼,常有漁船停泊橋下避曬納涼.已知主橋拱為拋物線型,在正常水位下測得主拱寬24m,最高點(diǎn)離水面8m,以水平線AB為x軸,AB的中點(diǎn)為原點(diǎn)建立坐標(biāo)系.
①求此橋拱線所在拋物線的解析式.
②橋邊有一浮在水面部分高4m,最寬處16m的河魚餐船,如果從安全方面考慮,要求通過愚溪橋的船只,其船身在鉛直方向上距橋內(nèi)壁的距離不少于0.5m.探索此船能否通過愚溪橋?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué)解題思路與方法 題型:047

已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當(dāng)陽光與水平線成60°角時,電線桿的影子BC的長度為4米,則電線桿AB的高度為


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步練習(xí)冊答案