【題目】先化簡,再求值
(1)2x-{-3y+[3x-2(3x-y)]},其中x=-1,y=.
(2)5(3a2b-ab2-1)-(ab2+3a2b-5),其中a=,b=.
【答案】(1)5x+y,; (2)12a2b﹣6ab2,.
【解析】
(1)先去括號再合并同類項,最后把字母的值代入計算即可;
(2)先去括號再合并同類項,最后把字母的值代入計算即可.
(1)2x﹣{﹣3y+[3x﹣2(3x﹣y)]}
=2x﹣{﹣3y+[3x﹣6x+2y]}
=2x﹣{﹣3y+3x﹣6x+2y}
=2x﹣{﹣y﹣3x}
=2x+y+3x
=5x+y,
當x=﹣1,y=時,
原式=5×(﹣1)+()=;
(2)5(3a2b﹣ab2﹣1)﹣(ab2+3a2b﹣5)
=15a2b﹣5ab2﹣5﹣ab2﹣3a2b+5
=12a2b﹣6ab2
當a=,b=時,原式=12× ()2×﹣6×() ×()2=1+=
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過點(-1,-5),且與正比例函數(shù)y=x的圖象相交于點(2,a),求:
(1)a的值.
(2)k,b的值.
(3)這兩個函數(shù)圖象與x軸所圍成的三角形的面積。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,將兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)操作發(fā)現(xiàn) 如圖2,固定△ABC,使△DEC繞點C旋轉(zhuǎn),當點D恰好落在AB邊上時,填空:
② 線段DE與AC的位置關(guān)系是;
②設(shè)△BDC的面積為S1 , △AEC的面積為S2 , 則S1與S2的數(shù)量關(guān)系是 .
(2)猜想論證 當△DEC繞點C旋轉(zhuǎn)到如圖3所示的位置時,小明猜想(1)中S1與S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC、CE邊上的高,請你證明小明的猜想.
(3)拓展探究 已知∠ABC=60°,點D是角平分線上一點,BD=CD=4,DE∥AB交BC于點E(如圖4).若在射線BA上存在點F,使S△DCF=S△BDE , 請直接寫出相應的BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.把△ABC繞AB邊上的點D順時針旋轉(zhuǎn)90°得到△A′B′C′,A′C′交AB于點E.若AD=BE,則△A′DE的面積是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明在學習三角形知識時,發(fā)現(xiàn)如下三個有趣的結(jié)論:在Rt△ABC中,∠A=90°,BD平分∠ABC,M為直線AC上一點,ME⊥BC,垂足為E,∠AME的平分線交直線AB于點F.
(1)如圖①,M為邊AC上一點,則BD、MF的位置關(guān)系是 ;
如圖②,M為邊AC反向延長線上一點,則BD、MF的位置關(guān)系是 ;
如圖③,M為邊AC延長線上一點,則BD、MF的位置關(guān)系是 ;
(2)請就圖①、圖②、或圖③中的一種情況,給出證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠A=90°,AD=4,連接BD,BD⊥CD,∠ADB=∠C.若P是BC邊上一動點,則DP長的最小值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,動點P在∠ABC的平分線BD上,動點M在BC邊上,若BC=3,∠ABC=45°,則PM+PC的最小值是( )
A. 2 B. C. D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在菱形ABCD中,,點E為AB邊的中點,點P與點A關(guān)于DE對稱,連接DP、BP、CP,下列結(jié)論:;;;,其中正確的是
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com