如圖,△ABD和△ACE都是等邊三角形,則△ADC≌△ABE的依據(jù)是
SAS
SAS
分析:由△ABD和△ACE都是等邊三角形,根據(jù)等邊三角形的性質(zhì)即可得:AD=AB,AC=AE,∠DAB=∠EAC=60°,繼而證得∠DAC=∠BAE,然后利用SAS即可證得△ADC≌△ABE.
解答:解:∵△ABD和△ACE都是等邊三角形,
∴AD=AB,AC=AE,∠DAB=∠EAC=60°,
∴∠DAB+∠BAC=∠EAC+∠BAC,
即∠DAC=∠BAE,
在△ADC和△ABE中,
AD=AB
∠DAC=∠BAE
AC=AE
,
∴△ADC≌△ABE(SAS).
故答案為:SAS.
點(diǎn)評:此題考查了全等三角形的判定以及等邊三角形的性質(zhì).此題難度適中,解題的關(guān)鍵是由題意證得∠DAC=∠BAE,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

33、如圖,△ABD和△ACE全等,點(diǎn)B和點(diǎn)C對應(yīng).AB=8,BD=7,AE=3,則CD=
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABD和△ACE都是等腰直角三角形,∠BAD和∠CAE是直角,若AB=6,BC=5,AC=4,則DE的長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,∠ABD和∠BDC的平分線相交于點(diǎn)E,BE交CD于F,∠1+∠2=90°,試問:直線AB、CD在位置上有什么關(guān)系?∠2與∠3在數(shù)量上有什么關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

11、如圖,∠ABD和∠BDC的平分線相交于點(diǎn)E,BE交CD于點(diǎn)F,∠1+∠2=90°,且∠2=40°.則∠3的度數(shù)為
50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖Rt△ABD和Rt△BCD如圖放置,∠BAD=∠BCD=90°,連接AC,若AC平分∠DAB,則線段AB、AD、AC有怎樣的數(shù)量關(guān)系?寫出你的猜想,并證明.

查看答案和解析>>

同步練習(xí)冊答案