如圖所示,直線y=與x軸相交于點A(4,0),與y軸相交于點B,將△AOB沿著y軸折疊,使點A落在x軸上,點A的對應點為點C.
(1)求點C的坐標;
(2)設點P為線段CA上的一個動點,點P與點A、C不重合,連接PB,以點P為端點作射線PM交AB于點M,使∠BPM=∠BAC
①求證:△PBC∽△MPA;
②是否存在點P使△PBM為直角三角形?若存在,請求出點P的坐標;若不存在,請說明理由.

【答案】分析:(1)A與C關(guān)于y軸對稱,據(jù)此即可確定C的坐標;
(2)①根據(jù)點C與點A關(guān)于y軸對稱,即可得到BC=BA,則∠BCP=∠MAP,再根據(jù)三角形的外角的性質(zhì)即可證得∠PMA=∠BPC,從而證得兩個三角形相似;
②首先求得B的坐標,當∠PBM=90°時,則有△BPO∽△ABO,根據(jù)相似三角形的對應邊的比相等,即可求得PO的長,求得P的坐標;
當∠PMB=90°時,則∠PMA═90°時,BP⊥AC,則此時點P與點O重合.則P的坐標可以求得.
解答:(1)解:∵A(4,0),且點C與點A關(guān)于y軸對稱,∴C(-4,0).

(2)①證明:∵∠BPM=∠BAC,且∠PMA=∠BPM+∠PBM,∠BPC=∠BAC+∠PBM,
∴∠PMA=∠BPC.
又∵點C與點A關(guān)于y軸對稱,且∠BPM=∠BAC,
∴∠BCP=∠MAP.
∴△PBC∽△MPA.
②存在.
解:∵直線y=-x+b與x軸相交于點A(4,0),
∴把A(4,0)代入y=-x+b,得:b=3.∴y=-x+3.∴B(0,3).
當∠PBM=90°時,則有△BPO∽△ABO
=,即=.∴PO=  即:P1(-,0).
當∠PMB=90°時,則∠PMA═90°(如圖).
∴∠PAM+∠MPA=90°.
∵∠BPM=∠BAC,
∴∠BPM+∠APM=90°.
∴BP⊥AC.
∵過點B只有一條直線與AC垂直,
∴此時點P與點O重合,即:符合條件的點P2的坐標為:P2(0,0).
∴使△PBM為直角三角形的點P有兩個P1(-,0),P2(0,0).
點評:本題是一次函數(shù)與相似三角形的性質(zhì)與判定的綜合應用,正確證明△PBC∽△MPA是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•永春縣質(zhì)檢)如圖所示,直線AB與x軸交于點A(3,0),與y軸交于點B(0,4),點P為雙曲線y=
6
x
(x>0)上的一點,點P分別作x軸、y軸的垂線段PE、PF,當PE、PF分別與線段AB交于點C、D時.
(1)AB=
5
5
;
(2)AD•BC=
25
2
25
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•臺灣)如圖所示的直線AE與四邊形ABCD的外接圓相切于A點.若∠DAE=12°,
AB
、
BC
、
CD
三弧的度數(shù)相等,則∠ABC的度數(shù)為何?( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,直線AB與CD相交于點O,∠DOE=60°,∠BOE=27°,求∠BOD,∠AOD,∠AOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖所示,直線AD與BC交于點O,OA=OD,OB=OC,AB與CD有怎樣的數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,直線AB與直線CD相交于點O,EO⊥AB,∠EOD=25°,則∠BOD=
65°
65°
,∠AOC=
65°
65°
,∠BOC=
115°
115°

查看答案和解析>>

同步練習冊答案