如圖,點P在∠AOB的內(nèi)部.
(1)畫圖:①過點P畫AO的平行線,交OB于點C;②過點P畫OB的平行線,交OA于點D.
(2)若∠AOB=60°,求∠CPD的度數(shù).
考點:作圖—基本作圖
專題:
分析:(1)根據(jù)題意畫出圖形即可;
(2)首先根據(jù)PC∥AO可得∠CPD=∠PDA.再由PD∥BO可得∠PDA=∠AOB.進而得到∠CPD=∠AOB=60°.
解答:解:(1)如圖所示;

(2)∵PC∥AO,
∴∠CPD=∠PDA.
∵PD∥BO,
∴∠PDA=∠AOB.
∴∠CPD=∠AOB=60°.
點評:此題主要考查了平行線的性質(zhì),以及基本作圖,關鍵是掌握兩直線平行,同位角相等,內(nèi)錯角相等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知Rt△ABC和Rt△ADE,∠ACB=∠AED=90°,∠BAC=∠DAE=30°,P為線段BD的中點,連接PC,PE.
(1)如圖1,若AC=AE,C、A、E依次在同一條直線上,則∠CPE=
 
;PC與PE存在的等量關系是
 

(2)如圖2,若AC≠AE,C、A、E依次在同一條直線上,猜想∠CPE的度數(shù)及PC與PE存在的等量關系,并寫出你的結論;(不需要證明)
 
;
(3)如圖3,在圖2的基礎上,若將Rt△ADE繞點A逆時針任意旋轉(zhuǎn)一個角度,使C、A、E不在一條直線上,試探究∠CPE的度數(shù)及PC與PE存在的等量關系,寫出你的結論并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,梯形ANBC中,AN‖BC,且BC=2NA,∠NBC=90°,⊙O過A、B、C三點,直徑BE交AC于M,交NA的延長線于D.
(1)求證:AB=AC;
(2)若
EM
OM
=
3
2
,求tan∠D的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

通過如圖平移得到的是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,與∠1構成同旁內(nèi)角的角的個數(shù)是( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知a、b、c均為實數(shù),且
a-1
+|b-6︳+(c+16)2=0;求方程ax2+bx+c=0的根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

平面直角坐標系中,若平移二次函數(shù)y=(x-2012)(x-2013)+4的圖象,使其與x軸交于兩點,且此兩點的距離為1個單位,則平移方式為( 。
A、向上平移4個單位
B、向下平移4個單位
C、向左平移4個單位
D、向右平移4個單位

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若4是關于x的方程x2-6x+c=0的一個根,則這個方程的另一個根是( 。
A、2B、-2C、5D、-5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

分解因式:4a2-16=
 

查看答案和解析>>

同步練習冊答案