如圖,OA是⊙B的直徑,OA=4,CD是⊙B的切線,D為切點(diǎn),∠DOC=30°,則點(diǎn)C的坐標(biāo)為   
【答案】分析:連接BD,即可求得BC的長(zhǎng),進(jìn)而求得OC的長(zhǎng),則坐標(biāo)即可求得.
解答:解:連接BD,
∵∠DOC=30°,
∴∠BDC=60°,
∴∠BCD=30°,
∴BC=2BD=4,
∴OC=OB+BC=6,
故點(diǎn)C的坐標(biāo)為(6,0).
故答案是:(6,0).
點(diǎn)評(píng):本題考查了圓的切線性質(zhì),及解直角三角形的知識(shí).運(yùn)用切線的性質(zhì)來進(jìn)行計(jì)算或論證,常通過作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,火焰的光線穿過小孔O,在豎直的屏幕上形成倒立的實(shí)像,像的高度為1.5cm,OA=48cm,OC=16cm,則火焰的高度是
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平面直角坐標(biāo)系中,矩形ABCO的邊OA在y正半軸上,OC在x正半軸上,點(diǎn)D是線段OC上一點(diǎn),過點(diǎn)D作DE⊥AD交直線BC于點(diǎn)E,以A、D、E為頂點(diǎn)作矩形ADEF.
(1)求證:△AOD∽△DCE;
(2)若點(diǎn)A坐標(biāo)為(0,4),點(diǎn)C坐標(biāo)為(7,0).
①當(dāng)點(diǎn)D的坐標(biāo)為(5,0)時(shí),拋物線y=ax2+bx+c過A、F、B三點(diǎn),求點(diǎn)F的坐標(biāo)及a、b、c的值;
②若點(diǎn)D(k,0)是線段OC上任意一點(diǎn),點(diǎn)F是否還在①中所求的拋物線上?如果在,請(qǐng)說明理由;如果不在,請(qǐng)舉反例說明;
(3)若點(diǎn)A的坐標(biāo)是(0,m),點(diǎn)C的坐標(biāo)是(n,0),當(dāng)點(diǎn)D在線段OC上運(yùn)動(dòng)時(shí),是否也存在一條拋物線,使得點(diǎn)F都落在該拋物線上?若存在,請(qǐng)直接用含m精英家教網(wǎng)、n的代數(shù)式表示該拋物線;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)直角梯形OABC中,BC∥OA,∠OAB=90°,OA=4,腰AB上有一點(diǎn)D,AD=2,四邊形ODBC的面積為6,建立如圖所示的直坐標(biāo)系,反比例函數(shù)y=
m
x
(x>0)的圖象恰好經(jīng)過點(diǎn)C和點(diǎn)D,則CB與BD的比值是( 。
A、1
B、
4
3
C、
6
5
D、
8
7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)是(-2,4),過點(diǎn)A作AB⊥y軸,垂足為B,連接OA.
(1)求B點(diǎn)的坐標(biāo);
(2)若拋物線y=-x2+bx+c經(jīng)過點(diǎn)A、B.
①求拋物線的解析式及頂點(diǎn)坐標(biāo);
②將拋物線豎直向下平移m個(gè)單位,使平移后得到的拋物線頂點(diǎn)落在△OAB的內(nèi)部(不包括△OAB的邊界),求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年初中數(shù)學(xué)總復(fù)習(xí)下冊(cè) 題型:044

如圖所示是某學(xué)校田徑體育場(chǎng)一部分的示意圖,第一條跑道每圈為400 m.跑道分直道和彎道,直道為長(zhǎng)相等的平行線段,彎道為同心的半圓形,彎道與直道相連接.已知直道BC的長(zhǎng)為86.96 m,跑道的寬為1 m.(π=3.14,結(jié)果精確到0.01 m)

(1)求第一條跑道的彎道部分()的半徑;

(2)求一圈中第二條跑道比第一條跑道長(zhǎng)多少米?

(3)若進(jìn)行200 m比賽,求第六道的起點(diǎn)F與圓心O的連線FO與OA的夾角∠FOA的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案